While some research has explored racial and ethnic differences in disordered eating, this study may be the first to examine these differences in orthorexia nervosa, involving obsessive-compulsive thoughts and behavior...While some research has explored racial and ethnic differences in disordered eating, this study may be the first to examine these differences in orthorexia nervosa, involving obsessive-compulsive thoughts and behaviors concerning healthy eating, which negatively impact one’s life. Adult participants, recruited from college courses and social media, completed an online survey with the Orthorexia Nervosa Inventory (ONI) and the Eating Attitudes Test-26 (EAT-26). Regarding racial and ethnic background, 743 were White, 249 were Hispanic, 87 were Black, 61 were Asian or Pacific Islander, and 110 were biracial/multiracial. A MANCOVA revealed that the racial and ethnic groups did not differ on the ONI subscales assessing orthorexic behaviors, impairments, and emotions, after accounting for gender, BMI, and EAT-26 total scores that were covariates. In contrast, a second MANCOVA did reveal group differences on the EAT-26 subscales, after accounting for gender, BMI, and ONI total scores that were covariates. Black participants scored significantly lower than the other racial and ethnic groups on the subscale assessing dieting behaviors characteristic of anorexia nervosa, and the subscale assessing binge-eating and purging behaviors characteristic of bulimia nervosa. Further, Hispanic participants scored significantly lower than White participants on the latter subscale. These findings suggest that while orthorexic symptomatology does not differ based on race and ethnicity, a Black race and Hispanic ethnicity may be protective factors against disordered eating, perhaps related either to cultural norms concerning body image or to the resiliency and social support among the Black and Hispanic communities.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
During pregnancy,maternal immune activation(MIA),due to infection,chronic inflammatory disorders,or toxic exposures,can result in lasting health impacts on the developing fetus.MIA has been associated with an increase...During pregnancy,maternal immune activation(MIA),due to infection,chronic inflammatory disorders,or toxic exposures,can result in lasting health impacts on the developing fetus.MIA has been associated with an increased risk of neurodevelopmental disorders,such as autism spectrum disorder(ASD)in the offspring.ASD is characterized by increased repetitive and stereotyped behaviors and decreased sociability.As of 2020,1 in 36 children are diagnosed with ASD by the age of 8 years,with ASD rates continuing to increase in prevalence in USA(Tamayo et al.,2023).Post-mortem brain studies,biomarker and transcriptomic studies,and epidemiology studies have provided compelling evidence of immune dysregulation in the circulation and brain of individuals diagnosed with ASD.Currently,the etiology of ASD is largely unknown,however,genetic components and environmental factors can contribute to increased susceptibility.Maternal allergic asthma(MAA),a form of MIA,has been identified as a potential risk factor for developing neurodevelopmental disorders(Patel et al.,2020).Asthma is a chronic inflammatory condition driven by a T-helper type(TH)2 immune response.展开更多
Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at...Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.展开更多
A range of neurodegenerative disorders,collectively termed parkinsonian disorders,present with a complex array of both motor and non-motor symptoms.Included in this group are Parkinson’s disease(PD),dementia with Lew...A range of neurodegenerative disorders,collectively termed parkinsonian disorders,present with a complex array of both motor and non-motor symptoms.Included in this group are Parkinson’s disease(PD),dementia with Lewy bodies(DLB),multiple system atrophy(MSA),corticobasal syndrome(CBS),and progressive supranuclear palsy(PSP).These disorders are differentiated neuropathologically by their dominant protein pathologies involvingα-synuclein(α-syn)and/or tau,the types of brain cells affected,such as neurons,oligodendroglia,and astrocytes,and the specific brain regions involved(Tolosa et al.,2021).展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release f...In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.展开更多
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with...Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.展开更多
BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder with multifaceted origins.In recent studies,neuroinflammation and immune dysregulation have come to the forefront in its pathogenesis.Th...BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder with multifaceted origins.In recent studies,neuroinflammation and immune dysregulation have come to the forefront in its pathogenesis.There are studies suggesting that stem cell therapy may be effective in the treatment of ASD.AIM To evolve the landscape of ASD treatment,focusing on the potential benefits and safety of stem cell transplantation.METHODS A detailed case report is presented,displaying the positive outcomes observed in a child who underwent intrathecal and intravenous Wharton’s jelly-derived mesenchymal stem cells(WJ-MSCs)transplantation combined with neurorehabilitation.RESULTS The study demonstrates a significant improvement in the child’s functional outcomes(Childhood Autism Rating Scale,Denver 2 Developmental Screening Test),especially in language and gross motor skills.No serious side effects were encountered during the 2-year follow-up.CONCLUSION The findings support the safety and effectiveness of WJ-MSC transplantation in managing ASD.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023,of which 4 studies wer...We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023,of which 4 studies were performed with whole blood,4 with blood plasma,5 with blood serum,1 with serum neural cell adhesion molecule L1-captured extracellular vesicles,1 with blood cells,and 2 with peripheral blood mononuclear cells.Most of the studies involved children and the study cohorts were largely males.Many of the studies had performed microRNA sequencing or quantitative polymerase chain reaction assays to measure microRNA expression.Only five studies had used real-time polymerase chain reaction assay to validate microRNA expression in autism spectrum disorder subjects compared to controls.The microRNAs that were validated in these studies may be considered as potential candidate biomarkers for autism spectrum disorder and include miR-500a-5p,-197-5p,-424-5p,-664a-3p,-365a-3p,-619-5p,-664a-3p,-3135a,-328-3p,and-500a-5p in blood plasma and miR-151a-3p,-181b-5p,-320a,-328,-433,-489,-572,-663a,-101-3p,-106b-5p,-19b-3p,-195-5p,and-130a-3p in blood serum of children,and miR-15b-5p and-6126 in whole blood of adults.Several important limitations were identified in the studies reviewed,and need to be taken into account in future studies.Further studies are warranted with children and adults having different levels of autism spectrum disorder severity and consideration should be given to using animal models of autism spectrum disorder to investigate the effects of suppressing or overexpressing specific microRNAs as a novel therapy.展开更多
Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarke...Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in bloodand brain-based materials. From the studies that had validated the preliminary findings,potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p,-30d-5p,-330-5p,-378a-5p,-21-3p,-330-3p,-345-5p in whole blood, miR-19b-3p,-1180-3p,-125a-5p, let-7e-5p in blood plasma, and miR-7-5p,-23b-5p,-142-3p,-221-5p,-370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptorsite binders(drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics(drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and-29c with miR-30e-3p and-526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p,-29a-3p,-106a-5p,-106b-5p,-107,-125a-3p,-125b-5p and of miR-107,-125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p,-107 was found for manic compared to euthymic patients. In two other studies using blood plasma,downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134,-152,-607,-633,-652,-155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a,-34b,-34c,-137, and-140-3p,-21-3p,-30d-5p,-330-5p,-378a-5p,-134,-19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.展开更多
Comprehensively considering energy, volume and electronic structure of alloys, the ninth equation was determined as the interaction function of Nb-Mo alloys system in BCC structure on the basis of idea of systematic s...Comprehensively considering energy, volume and electronic structure of alloys, the ninth equation was determined as the interaction function of Nb-Mo alloys system in BCC structure on the basis of idea of systematic science of alloys, experimental lattice constants and heats of formation of disordered Nb(1-x)Mox alloys. The structural parameters and properties of Nb and Mo characteristic atoms sequences and corresponding characteristic crystals sequences were determined in Nb-Mo alloys system. The electronic structure and physical properties of disordered Nb(1-x)Mox alloys system were calculated according to concentration of characteristic atoms of disordered alloys. The change trend of physical properties is the same as that of electronic structure.展开更多
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are c...Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.展开更多
Sleep disturbances are common in childhood and adolescence. Sleep problems in early infants tend to be persistent and prominent in preschool and school-aged children. Chronic sleep disorders, especially in young child...Sleep disturbances are common in childhood and adolescence. Sleep problems in early infants tend to be persistent and prominent in preschool and school-aged children. Chronic sleep disorders, especially in young children may lead to neurobehavioral problems and psycho-cognitive impairment. Sleep difficulties may be the result of underlying medical conditions, (breathing disorders) or psychological problems. Research studies have shown the association between sleep disorders and day time cognitive impairment, behavioral problems, poor school performance and inattention in children. Appropriate diagnosis and early management of sleep disorders in children lead to improvement of neurocognitive function and behavioral problems in these children.展开更多
The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are...The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.展开更多
Patients with type 1 diabetes mellitus are at high risk for disordered eating behaviors (DEB). Due to the fact that type 1 diabetes mellitus is one of the most common chronic illnesses of childhood and adolescence, th...Patients with type 1 diabetes mellitus are at high risk for disordered eating behaviors (DEB). Due to the fact that type 1 diabetes mellitus is one of the most common chronic illnesses of childhood and adolescence, the coexistence of eating disorders (ED) and diabetes often affects adolescents and young adults. Since weight management during this state of development can be especially diff icult for those with type 1 diabetes, some diabetics may restrict or omit insulin, a condition known as diabulimia, as a form of weight control. It has been clearly shown that ED in type 1 diabetics are associated with impaired metabolic control, more frequent episodes of ketoacidosis and an earlier than expected onset of diabetes-related microvascular complications, particularly retinopathy. The management of these conditions requires a multidisciplinary team formed by an endocrinologist/diabetologist, a nurse educator, a nutritionist, a psychologist and, frequently, a psychiatrist. The treatment of type 1 diabetes patients with DEB and ED should have the following compo- nents: diabetes treatment, nutritional management and psychological therapy. A high index of suspicion of the presence of an eating disturbance, particularly among those patients with persistent poor metabolic control, repeated episodes of ketoacidosis and/or weight andshape concerns are recommended in the initial stage of diabetes treatment, especially in young women. Given the extent of the problem and the severe medical risk associated with it, more clinical and technological research aimed to improve its treatment is critical to the future health of this at-risk population.展开更多
文摘While some research has explored racial and ethnic differences in disordered eating, this study may be the first to examine these differences in orthorexia nervosa, involving obsessive-compulsive thoughts and behaviors concerning healthy eating, which negatively impact one’s life. Adult participants, recruited from college courses and social media, completed an online survey with the Orthorexia Nervosa Inventory (ONI) and the Eating Attitudes Test-26 (EAT-26). Regarding racial and ethnic background, 743 were White, 249 were Hispanic, 87 were Black, 61 were Asian or Pacific Islander, and 110 were biracial/multiracial. A MANCOVA revealed that the racial and ethnic groups did not differ on the ONI subscales assessing orthorexic behaviors, impairments, and emotions, after accounting for gender, BMI, and EAT-26 total scores that were covariates. In contrast, a second MANCOVA did reveal group differences on the EAT-26 subscales, after accounting for gender, BMI, and ONI total scores that were covariates. Black participants scored significantly lower than the other racial and ethnic groups on the subscale assessing dieting behaviors characteristic of anorexia nervosa, and the subscale assessing binge-eating and purging behaviors characteristic of bulimia nervosa. Further, Hispanic participants scored significantly lower than White participants on the latter subscale. These findings suggest that while orthorexic symptomatology does not differ based on race and ethnicity, a Black race and Hispanic ethnicity may be protective factors against disordered eating, perhaps related either to cultural norms concerning body image or to the resiliency and social support among the Black and Hispanic communities.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
基金supported by the National Institute of Environmental Health Sciences(R21ES035492,R21ES035969)National Institutes of Child Health(R01HD090214)(to PA).
文摘During pregnancy,maternal immune activation(MIA),due to infection,chronic inflammatory disorders,or toxic exposures,can result in lasting health impacts on the developing fetus.MIA has been associated with an increased risk of neurodevelopmental disorders,such as autism spectrum disorder(ASD)in the offspring.ASD is characterized by increased repetitive and stereotyped behaviors and decreased sociability.As of 2020,1 in 36 children are diagnosed with ASD by the age of 8 years,with ASD rates continuing to increase in prevalence in USA(Tamayo et al.,2023).Post-mortem brain studies,biomarker and transcriptomic studies,and epidemiology studies have provided compelling evidence of immune dysregulation in the circulation and brain of individuals diagnosed with ASD.Currently,the etiology of ASD is largely unknown,however,genetic components and environmental factors can contribute to increased susceptibility.Maternal allergic asthma(MAA),a form of MIA,has been identified as a potential risk factor for developing neurodevelopmental disorders(Patel et al.,2020).Asthma is a chronic inflammatory condition driven by a T-helper type(TH)2 immune response.
基金supported by Postdoc Fellowship from the Foundation for Angelman Syndrome Therapeutics(FT2022-005 to JM,PD2023-001 to XY,and FT2024-001 to YAH)STTR R41 MH118747(to JM)。
文摘Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
文摘A range of neurodegenerative disorders,collectively termed parkinsonian disorders,present with a complex array of both motor and non-motor symptoms.Included in this group are Parkinson’s disease(PD),dementia with Lewy bodies(DLB),multiple system atrophy(MSA),corticobasal syndrome(CBS),and progressive supranuclear palsy(PSP).These disorders are differentiated neuropathologically by their dominant protein pathologies involvingα-synuclein(α-syn)and/or tau,the types of brain cells affected,such as neurons,oligodendroglia,and astrocytes,and the specific brain regions involved(Tolosa et al.,2021).
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金supported by the National Natural Science Foundation of China,No.81971269 (to DP)the Science and Technology Commission of Shanghai,No.YDZX20213100001003 (to DP)。
文摘In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
文摘Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.
文摘BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder with multifaceted origins.In recent studies,neuroinflammation and immune dysregulation have come to the forefront in its pathogenesis.There are studies suggesting that stem cell therapy may be effective in the treatment of ASD.AIM To evolve the landscape of ASD treatment,focusing on the potential benefits and safety of stem cell transplantation.METHODS A detailed case report is presented,displaying the positive outcomes observed in a child who underwent intrathecal and intravenous Wharton’s jelly-derived mesenchymal stem cells(WJ-MSCs)transplantation combined with neurorehabilitation.RESULTS The study demonstrates a significant improvement in the child’s functional outcomes(Childhood Autism Rating Scale,Denver 2 Developmental Screening Test),especially in language and gross motor skills.No serious side effects were encountered during the 2-year follow-up.CONCLUSION The findings support the safety and effectiveness of WJ-MSC transplantation in managing ASD.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
文摘We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023,of which 4 studies were performed with whole blood,4 with blood plasma,5 with blood serum,1 with serum neural cell adhesion molecule L1-captured extracellular vesicles,1 with blood cells,and 2 with peripheral blood mononuclear cells.Most of the studies involved children and the study cohorts were largely males.Many of the studies had performed microRNA sequencing or quantitative polymerase chain reaction assays to measure microRNA expression.Only five studies had used real-time polymerase chain reaction assay to validate microRNA expression in autism spectrum disorder subjects compared to controls.The microRNAs that were validated in these studies may be considered as potential candidate biomarkers for autism spectrum disorder and include miR-500a-5p,-197-5p,-424-5p,-664a-3p,-365a-3p,-619-5p,-664a-3p,-3135a,-328-3p,and-500a-5p in blood plasma and miR-151a-3p,-181b-5p,-320a,-328,-433,-489,-572,-663a,-101-3p,-106b-5p,-19b-3p,-195-5p,and-130a-3p in blood serum of children,and miR-15b-5p and-6126 in whole blood of adults.Several important limitations were identified in the studies reviewed,and need to be taken into account in future studies.Further studies are warranted with children and adults having different levels of autism spectrum disorder severity and consideration should be given to using animal models of autism spectrum disorder to investigate the effects of suppressing or overexpressing specific microRNAs as a novel therapy.
文摘Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in bloodand brain-based materials. From the studies that had validated the preliminary findings,potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p,-30d-5p,-330-5p,-378a-5p,-21-3p,-330-3p,-345-5p in whole blood, miR-19b-3p,-1180-3p,-125a-5p, let-7e-5p in blood plasma, and miR-7-5p,-23b-5p,-142-3p,-221-5p,-370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptorsite binders(drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics(drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and-29c with miR-30e-3p and-526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p,-29a-3p,-106a-5p,-106b-5p,-107,-125a-3p,-125b-5p and of miR-107,-125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p,-107 was found for manic compared to euthymic patients. In two other studies using blood plasma,downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134,-152,-607,-633,-652,-155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a,-34b,-34c,-137, and-140-3p,-21-3p,-30d-5p,-330-5p,-378a-5p,-134,-19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.
基金Project (50954006) supported by the National Natural Science Foundation of ChinaProject (2009GK3152) supported by the Hunan Science and Technology Department, China+1 种基金Project (201012) supported by the Hunan Provincial Construction Department, ChinaProject (K1003048-11) supported by the Changsha City Science and Technology Department, China
文摘Comprehensively considering energy, volume and electronic structure of alloys, the ninth equation was determined as the interaction function of Nb-Mo alloys system in BCC structure on the basis of idea of systematic science of alloys, experimental lattice constants and heats of formation of disordered Nb(1-x)Mox alloys. The structural parameters and properties of Nb and Mo characteristic atoms sequences and corresponding characteristic crystals sequences were determined in Nb-Mo alloys system. The electronic structure and physical properties of disordered Nb(1-x)Mox alloys system were calculated according to concentration of characteristic atoms of disordered alloys. The change trend of physical properties is the same as that of electronic structure.
基金The project supported by National Natural Science Foundation of China (10632020, 10672017 and 20451057)
文摘Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.
文摘Sleep disturbances are common in childhood and adolescence. Sleep problems in early infants tend to be persistent and prominent in preschool and school-aged children. Chronic sleep disorders, especially in young children may lead to neurobehavioral problems and psycho-cognitive impairment. Sleep difficulties may be the result of underlying medical conditions, (breathing disorders) or psychological problems. Research studies have shown the association between sleep disorders and day time cognitive impairment, behavioral problems, poor school performance and inattention in children. Appropriate diagnosis and early management of sleep disorders in children lead to improvement of neurocognitive function and behavioral problems in these children.
基金supported by the National Natural Science Foundation of China(Nos.10672017 and 10632020).supports provided by the China Postdoctoral Science Foundation,Heilongjiang Province Postdoctoral Science Foundation
文摘The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
基金Supported by a grant from INCITE, Consellería Innovación e Industria, Galician Government
文摘Patients with type 1 diabetes mellitus are at high risk for disordered eating behaviors (DEB). Due to the fact that type 1 diabetes mellitus is one of the most common chronic illnesses of childhood and adolescence, the coexistence of eating disorders (ED) and diabetes often affects adolescents and young adults. Since weight management during this state of development can be especially diff icult for those with type 1 diabetes, some diabetics may restrict or omit insulin, a condition known as diabulimia, as a form of weight control. It has been clearly shown that ED in type 1 diabetics are associated with impaired metabolic control, more frequent episodes of ketoacidosis and an earlier than expected onset of diabetes-related microvascular complications, particularly retinopathy. The management of these conditions requires a multidisciplinary team formed by an endocrinologist/diabetologist, a nurse educator, a nutritionist, a psychologist and, frequently, a psychiatrist. The treatment of type 1 diabetes patients with DEB and ED should have the following compo- nents: diabetes treatment, nutritional management and psychological therapy. A high index of suspicion of the presence of an eating disturbance, particularly among those patients with persistent poor metabolic control, repeated episodes of ketoacidosis and/or weight andshape concerns are recommended in the initial stage of diabetes treatment, especially in young women. Given the extent of the problem and the severe medical risk associated with it, more clinical and technological research aimed to improve its treatment is critical to the future health of this at-risk population.