This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging...This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging.展开更多
This paper describes the research on a largescale dispatchable grid-connected photovoltaic(PV)system for supplying power to the grid for dispatch instead of supplying the electricity to a local load.In order to maximi...This paper describes the research on a largescale dispatchable grid-connected photovoltaic(PV)system for supplying power to the grid for dispatch instead of supplying the electricity to a local load.In order to maximise the value of the solar energy,a hybrid electricity storage consisting of batteries and supercapacitors is used with the PV system.This paper proposes a control strategy focusing on theDCpower at theDClink rather than at the grid-connected inverter.Two typical sets of real data,collected from existing sites,are used to demonstrate the practicality of the system.Finally,the simulation results are used to demonstrate the good performance and feasibility of the proposed system together with the proposed control strategy.展开更多
A large amount of renewable energy generation(REG)has been integrated into power systems,challenging the operational security of power networks.In a real-time dispatch,system operators need to estimate the ability of ...A large amount of renewable energy generation(REG)has been integrated into power systems,challenging the operational security of power networks.In a real-time dispatch,system operators need to estimate the ability of the power network to accommodate REG with a limited reserve capacity.The real-time dispatchable region(RTDR)is defined as the largest range of a power injection that the power network can accommodate in a certain dispatch interval for a given dispatch base point.State-of-the-art research on the RTDR adopts a DC power flow model regardless of the voltage profiles and reactive power,which can overlook potentially insecure operational states of the system.To address this issue,this paper proposes an AC power flow based RTDR model simultaneously considering the reactive power and voltage profiles constraints.The nonlinear constraints in our model are approximated using a linear power flow model together with a polytope approximation technique for quadratic constraints.An adaptive constraint generation algorithm is used to calculate the RTDR.Simulation results using the IEEE 5-bus and 30-bus systems illustrate the advantages of the proposed model.展开更多
Uncertainty in distributed renewable generation threatens the security of power distribution systems.The concept of dispatchable region is developed to assess the ability of power systems to accommodate renewable gene...Uncertainty in distributed renewable generation threatens the security of power distribution systems.The concept of dispatchable region is developed to assess the ability of power systems to accommodate renewable generation at a given operating point.Although DC and linearized AC power flow equations are typically used to model dispatchable regions for transmission systems,these equations are rarely suitable for distribution networks.To achieve a suitable trade-off between accuracy and efficiency,this paper proposes a dispatchable region formulation for distribution networks using tight convex relaxation.Secondorder cone relaxation is adopted to reformulate AC power flow equations,which are then approximated by a polyhedron to improve tractability.Further,an efficient adaptive constraint generation algorithm is employed to construct the proposed dispatchable region.Case studies on distribution systems of various scales validate the computational efficiency and accuracy of the proposed method.展开更多
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small...In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts...As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.展开更多
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol...This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.展开更多
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and a...Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.展开更多
This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power dis...This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout...An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.展开更多
基金State Grid Henan Power Company Science and Technology Project‘Key Technology and Demonstration Application of Multi-Domain Electric Vehicle Aggregated Charging Load Dispatch’(5217L0240003).
文摘This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging.
基金This work was supported by National High Technology Research and Development Program,“863 key technologies and development on large-scale grid-connected PV plants”(No.2011AA05A301).
文摘This paper describes the research on a largescale dispatchable grid-connected photovoltaic(PV)system for supplying power to the grid for dispatch instead of supplying the electricity to a local load.In order to maximise the value of the solar energy,a hybrid electricity storage consisting of batteries and supercapacitors is used with the PV system.This paper proposes a control strategy focusing on theDCpower at theDClink rather than at the grid-connected inverter.Two typical sets of real data,collected from existing sites,are used to demonstrate the practicality of the system.Finally,the simulation results are used to demonstrate the good performance and feasibility of the proposed system together with the proposed control strategy.
基金This work was supported in part by the Science and Technology Program of Guangzhou under Grant 201904010215the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS19011the Fundamental Research Funds for the Central Universities.
文摘A large amount of renewable energy generation(REG)has been integrated into power systems,challenging the operational security of power networks.In a real-time dispatch,system operators need to estimate the ability of the power network to accommodate REG with a limited reserve capacity.The real-time dispatchable region(RTDR)is defined as the largest range of a power injection that the power network can accommodate in a certain dispatch interval for a given dispatch base point.State-of-the-art research on the RTDR adopts a DC power flow model regardless of the voltage profiles and reactive power,which can overlook potentially insecure operational states of the system.To address this issue,this paper proposes an AC power flow based RTDR model simultaneously considering the reactive power and voltage profiles constraints.The nonlinear constraints in our model are approximated using a linear power flow model together with a polytope approximation technique for quadratic constraints.An adaptive constraint generation algorithm is used to calculate the RTDR.Simulation results using the IEEE 5-bus and 30-bus systems illustrate the advantages of the proposed model.
基金the National Natural Science Foundation of China(Grant No.52177086)the Fundamental Research Funds for the Central Universities(Grant No.2023ZYGXZR063)。
文摘Uncertainty in distributed renewable generation threatens the security of power distribution systems.The concept of dispatchable region is developed to assess the ability of power systems to accommodate renewable generation at a given operating point.Although DC and linearized AC power flow equations are typically used to model dispatchable regions for transmission systems,these equations are rarely suitable for distribution networks.To achieve a suitable trade-off between accuracy and efficiency,this paper proposes a dispatchable region formulation for distribution networks using tight convex relaxation.Secondorder cone relaxation is adopted to reformulate AC power flow equations,which are then approximated by a polyhedron to improve tractability.Further,an efficient adaptive constraint generation algorithm is employed to construct the proposed dispatchable region.Case studies on distribution systems of various scales validate the computational efficiency and accuracy of the proposed method.
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
文摘In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
基金the North China Branch of State Grid Corporation of China,Contract No.SGNC0000BGWT2310175.
文摘As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241A-1-1-ZN).
文摘This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
基金supported in part by the National Natural Science Foundation of China under Grant 62203468in part by the Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant Q2023X011+1 种基金in part by the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001in part by the Youth Talent Program Supported by China Railway Society,and in part by the Research Program of China Academy of Railway Sciences Corporation Limited under Grant 2023YJ112.
文摘Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.
文摘This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
基金The National Natural Science Foundation of China(No.71101025)the Science and Technology Key Plan Project of Changzhou(No.CE20125001)
文摘An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.