Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult...Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.展开更多
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on...With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels u...Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.展开更多
Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet...Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet visible spectroscopy (UV-vis), and the concentration measurement shows that the optimum concentration of GA is 0.45 g · L^-1. The dispersibility of the surface-modified MWCNTs in aqueous solution and cement matrix were investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and the mechanical properties of the composites were investigated. The results show that the addition of the treated nanotubes can improve both the flexural strength and the compressive strength of the Portland cement composite significantly. The flexural strength of the composite increases up to 43.38% with the MWCNT concentration of 0.08% (by weight of cement). The porosity and pore size distribution of the composites were measured by mercury intrusion porosimetry (MIP), and the results indicate that the cement paste doped with MWCNTs obtained lower porosity and concentrated pore size distribution. The morphological structure was analyzed by field emission scanning electron microscopy (FESEM) and EDS. It is shown that MWCNTs act as bridges and networks across cracks and voids, which transfer the load in case of tension, and the interface bond strength between the nanotubes and matrix is very strong.展开更多
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhi...The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.展开更多
Magnetically dispersed arc plasma exhibits typically dispersed uniform arc column as well as diffusive cathode root and diffusive anode root. In this paper magnetically dispersed arc plasma coupled with solid cathod...Magnetically dispersed arc plasma exhibits typically dispersed uniform arc column as well as diffusive cathode root and diffusive anode root. In this paper magnetically dispersed arc plasma coupled with solid cathode is numerically simulated by the simplified cathode sheath model of LOWKE . The numerical simulation results in argon show that the maximum value of arc root current density on the cathode surface is 3.5×10^7 A/m^2), and the maximum value of energy flux on the cathode surface is 3× 10^7 J/m^2, both values are less than the average values of a contracted arc, respectively.展开更多
The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for t...The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.展开更多
Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1...Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.展开更多
Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) we...Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.展开更多
Oxide dispersion strengthened (ODS) steels are considered as potential candidates for high temperature applications in fusion reactors be-cause of their excellent thermal creep behavior. In the present work, the dou...Oxide dispersion strengthened (ODS) steels are considered as potential candidates for high temperature applications in fusion reactors be-cause of their excellent thermal creep behavior. In the present work, the double-target magnetron co-sputtering method was recommended to prepare yttria dispersed ferrum films. Vacuum annealing and ion irradiation were carried out to study the surface topography and structural features of the prepared yttria dispersed ferrum samples. Experiments proved that while the yttria doping ratio in the ferrum film increases, the recrystallization temperature of the film will be enhanced and the sputtering damage by Xenon ion irradiation will be lowered. The sput-tering resistance of the obtained films would be improved with the growing of grains under vacuum annealing.展开更多
The slurry-bed hydrocracking of Karamay VGO with water-soluble dispersed catalyst was studied and the catalyst after being separated from the reaction products was analyzed by using LRS, XRD and XPS to identify the cr...The slurry-bed hydrocracking of Karamay VGO with water-soluble dispersed catalyst was studied and the catalyst after being separated from the reaction products was analyzed by using LRS, XRD and XPS to identify the crystal structure of the catalyst. In this paper, the catalytic functions of molybdenum, nickel and iron were studied respectively during the slurry-phase hydrocracking while using diphenylmethane as the model compound and VGO from Karamay crude as the feedstock. The test results showed that, during the slurry-phase hydrocracking of heavy oil, the metal sulfides entered into chemical reactions with the free- radical intermediate H·formed on the catalyst surface. The free-radical intermediate H· formed on the catalyst surface could react with the free-radicals of big molecules and could suppress coke deposition.展开更多
Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronauti...Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.展开更多
Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still ...Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges.Herein,two functional groups with opposite electron modulation abilities(nitro and amino)were introduced into the metal–organic frameworks(MIL-101(Fe))to tune the atomically dispersed metal sites and thus regulate the enzymelike activity.Notably,the functionalization of nitro can enhance the peroxidase(POD)-like activity of MIL-101(Fe),while the amino is poles apart.Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites.Benefiting from both geometric and electronic effects,the nitro-functionalized MIL-101(Fe)with a low reaction energy barrier for the HO*formation exhibits a superior POD-like activity.As a concept of the application,a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1.Moreover,the detection of organophosphorus pesticides was also achieved.This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.展开更多
In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted init...In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.展开更多
This paper investigates the monomer kinetics of polymer dispersed liquid crystal (PDLC) grating. Fourier transform infrared (FTIR) spectra are used in the studies of photoreaction kinetics. The results indicate th...This paper investigates the monomer kinetics of polymer dispersed liquid crystal (PDLC) grating. Fourier transform infrared (FTIR) spectra are used in the studies of photoreaction kinetics. The results indicate that there is a relative stable stage arises after a very short initial stage. Based on FTIR studies, the monomer diffusion equation is deduced and necessary numerical simulations are carried out to analyse the monomer conversion which is an important point to improve phase separation structure of PDLC grating. Some simulation results have a good agreement with experimental data. In addition, the effects induced by monomer diffusion constant D and diffusion-polymerization-ratio rate R are discussed. Results show that monomer conversion can be improved by increasing value of D. Besides, a good equilibrium state (R = 1) is more beneficial to the diffusion of monomer which is important in the process of phase separation.展开更多
The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an ...The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.展开更多
With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The te...With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The test results showed that under the conditions specified by this study, the catalyst prepared in a higher sulfiding atmosphere was more catalytically active due to its higher content of MoS2 and stronger intrinsic catalytic activity of MoS2 unit, which demonstrated that the sulfiding atmosphere for the preparation of catalysts not only could influence the yield of MoS2 but also the structure of MoS2.The analysis on the selectivity of octahydrophenanthrene isomers revealed that the catalyst prepared in a lower sulfiding atmosphere had a relatively higher catalytic selectivity to the hydrogenation of outer aromatic ring and the structure of catalysts could be modified under the specific reaction conditions. Moreover, the selectivity between the isomers of as-octahydrophenanthrene at different reaction time and temperature was analyzed and, based on the results, a hydrogenation mechanism over dispersed Mo-based catalysts was suggested, with monatomic hydrogen transfer and catalytic surface desorption of the half-addition intermediates functioning as the key points. In addition, it is concluded that the catalyst prepared in a lower sulfiding atmosphere was more capable of adsorption than the other one.展开更多
Highly dispersed Cu-base catalyst has been prepared via thermal decomposition of layered double hydroxides precursors. The XRD pattern and the HRTEM images of the as prepared catalyst confirmed the high dispersion of ...Highly dispersed Cu-base catalyst has been prepared via thermal decomposition of layered double hydroxides precursors. The XRD pattern and the HRTEM images of the as prepared catalyst confirmed the high dispersion of Cu and Fe ions. Results show that the catalyst has a relatively high selectivity of alkanes at low temperature.展开更多
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金This work was supported by National Key R&D Program of China(2021YFF0500503)National Natural Science Foundation of China(21925202,U22B2071)International Joint Mission on Climate Change and Carbon Neutrality.
文摘Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.
文摘With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios.
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
基金Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.20673107 and No.20873133), the National Basic Research Program of China (No.2007CB815203 and No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
文摘Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.
基金Funded by the National Natural Science Foundation of China(Nos.51278086,51178085)the Program for New Century Excellent Talentsin University(NCET)+1 种基金the State Key Laboratory of Coastal and Offshore Engineering(No.LP1109)the Fundamental Research Funds for the Central Universities(No.DUT11NY11)
文摘Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet visible spectroscopy (UV-vis), and the concentration measurement shows that the optimum concentration of GA is 0.45 g · L^-1. The dispersibility of the surface-modified MWCNTs in aqueous solution and cement matrix were investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and the mechanical properties of the composites were investigated. The results show that the addition of the treated nanotubes can improve both the flexural strength and the compressive strength of the Portland cement composite significantly. The flexural strength of the composite increases up to 43.38% with the MWCNT concentration of 0.08% (by weight of cement). The porosity and pore size distribution of the composites were measured by mercury intrusion porosimetry (MIP), and the results indicate that the cement paste doped with MWCNTs obtained lower porosity and concentrated pore size distribution. The morphological structure was analyzed by field emission scanning electron microscopy (FESEM) and EDS. It is shown that MWCNTs act as bridges and networks across cracks and voids, which transfer the load in case of tension, and the interface bond strength between the nanotubes and matrix is very strong.
基金financially supported by the National Natural Science Foundation of China (No.51872023)
文摘The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.
基金supported by National Natural Science Foundation of China (Nos.50876101,11035005)
文摘Magnetically dispersed arc plasma exhibits typically dispersed uniform arc column as well as diffusive cathode root and diffusive anode root. In this paper magnetically dispersed arc plasma coupled with solid cathode is numerically simulated by the simplified cathode sheath model of LOWKE . The numerical simulation results in argon show that the maximum value of arc root current density on the cathode surface is 3.5×10^7 A/m^2), and the maximum value of energy flux on the cathode surface is 3× 10^7 J/m^2, both values are less than the average values of a contracted arc, respectively.
文摘The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA09030104)the National Basic Research Program of China(973 Program,2012CB215500)+1 种基金the National Natural Science Foundation of China(2157625850823008)~~
文摘Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.
基金Supported by the National Natural Science Foundation of China (20776086)
文摘Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
基金support by the National Natural Science Foundation of China (No.61076003)the National Basic Research and Development Program of China (No.2010CB731600 and No.2010CB832900)
文摘Oxide dispersion strengthened (ODS) steels are considered as potential candidates for high temperature applications in fusion reactors be-cause of their excellent thermal creep behavior. In the present work, the double-target magnetron co-sputtering method was recommended to prepare yttria dispersed ferrum films. Vacuum annealing and ion irradiation were carried out to study the surface topography and structural features of the prepared yttria dispersed ferrum samples. Experiments proved that while the yttria doping ratio in the ferrum film increases, the recrystallization temperature of the film will be enhanced and the sputtering damage by Xenon ion irradiation will be lowered. The sput-tering resistance of the obtained films would be improved with the growing of grains under vacuum annealing.
文摘The slurry-bed hydrocracking of Karamay VGO with water-soluble dispersed catalyst was studied and the catalyst after being separated from the reaction products was analyzed by using LRS, XRD and XPS to identify the crystal structure of the catalyst. In this paper, the catalytic functions of molybdenum, nickel and iron were studied respectively during the slurry-phase hydrocracking while using diphenylmethane as the model compound and VGO from Karamay crude as the feedstock. The test results showed that, during the slurry-phase hydrocracking of heavy oil, the metal sulfides entered into chemical reactions with the free- radical intermediate H·formed on the catalyst surface. The free-radical intermediate H· formed on the catalyst surface could react with the free-radicals of big molecules and could suppress coke deposition.
基金Supported by the Key Projects of National Natural Science Foundation of China (50736006 9587003-13) the State Key Development Program for Basic Research of China (G1999-0222-08) the National Pandeng Project of China (85-06-1-2)
文摘Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.
基金The authors gratefully acknowledge the financial support of the Fundamental Research Funds for the Central Universities(CCNU20TS013)the National Natural Science Foundation of China(No.21503273)the Program of Introducing Talents of Discipline to Universities of China(111 program,B17019)and the Recruitment Program of Global Youth Experts of China.
文摘Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges.Herein,two functional groups with opposite electron modulation abilities(nitro and amino)were introduced into the metal–organic frameworks(MIL-101(Fe))to tune the atomically dispersed metal sites and thus regulate the enzymelike activity.Notably,the functionalization of nitro can enhance the peroxidase(POD)-like activity of MIL-101(Fe),while the amino is poles apart.Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites.Benefiting from both geometric and electronic effects,the nitro-functionalized MIL-101(Fe)with a low reaction energy barrier for the HO*formation exhibits a superior POD-like activity.As a concept of the application,a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1.Moreover,the detection of organophosphorus pesticides was also achieved.This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
基金Supported by the National Natural Science Foundation of China (No. 50236030, No. 50076038) and the Major State Basic Research Development Program of China (No. G19990222).
文摘In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.
基金supported by Natural Science Foundation of China (Grants Nos 60578035 and 50473040)Science Foundation of Jilin Province,China (Grant Nos 20050520 and 20050321-2)
文摘This paper investigates the monomer kinetics of polymer dispersed liquid crystal (PDLC) grating. Fourier transform infrared (FTIR) spectra are used in the studies of photoreaction kinetics. The results indicate that there is a relative stable stage arises after a very short initial stage. Based on FTIR studies, the monomer diffusion equation is deduced and necessary numerical simulations are carried out to analyse the monomer conversion which is an important point to improve phase separation structure of PDLC grating. Some simulation results have a good agreement with experimental data. In addition, the effects induced by monomer diffusion constant D and diffusion-polymerization-ratio rate R are discussed. Results show that monomer conversion can be improved by increasing value of D. Besides, a good equilibrium state (R = 1) is more beneficial to the diffusion of monomer which is important in the process of phase separation.
文摘The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.
基金the financial support from the National Basic Research Program of China (Grant 2012CB224801)
文摘With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The test results showed that under the conditions specified by this study, the catalyst prepared in a higher sulfiding atmosphere was more catalytically active due to its higher content of MoS2 and stronger intrinsic catalytic activity of MoS2 unit, which demonstrated that the sulfiding atmosphere for the preparation of catalysts not only could influence the yield of MoS2 but also the structure of MoS2.The analysis on the selectivity of octahydrophenanthrene isomers revealed that the catalyst prepared in a lower sulfiding atmosphere had a relatively higher catalytic selectivity to the hydrogenation of outer aromatic ring and the structure of catalysts could be modified under the specific reaction conditions. Moreover, the selectivity between the isomers of as-octahydrophenanthrene at different reaction time and temperature was analyzed and, based on the results, a hydrogenation mechanism over dispersed Mo-based catalysts was suggested, with monatomic hydrogen transfer and catalytic surface desorption of the half-addition intermediates functioning as the key points. In addition, it is concluded that the catalyst prepared in a lower sulfiding atmosphere was more capable of adsorption than the other one.
文摘Highly dispersed Cu-base catalyst has been prepared via thermal decomposition of layered double hydroxides precursors. The XRD pattern and the HRTEM images of the as prepared catalyst confirmed the high dispersion of Cu and Fe ions. Results show that the catalyst has a relatively high selectivity of alkanes at low temperature.