To accurately characterize the shear wave speed dispersion of seafloor sediments in the northern South China Sea,five types of sediments including silty clay,clayey silt,sandy silt,silty sand,and clayey sand were sele...To accurately characterize the shear wave speed dispersion of seafloor sediments in the northern South China Sea,five types of sediments including silty clay,clayey silt,sandy silt,silty sand,and clayey sand were selected,on which the measurements of the shear wave speed at 0.5-2.0 kHz and related physical properties were performed.Results reveal that the shear wave speed of sediments increases as the frequency increases,and the dispersion enhanced in the sediments in the order of silty clay,clayey silt,sandy silt,silty sand,and clayey sand,at a linear change rate of 0.727,0.787,3.32,4.893,and 6.967 m s−1 kHz−1,respectively.Through regression analysis,linear and logarithmic regression equations for the correlation between shear wave speed and frequency were established for each sediment type and the determination coefficients of regression equations indicate that the correlation is closer to a logarithmic relationship.The Grain-Shearing(GS)and Biot-Stoll models were used to calculate the shear wave speed dispersion of the five sediment types,and the comparison between theoretical prediction and measured results of shear wave speeds shows that the GS model can more accurately describe the shear wave speed dispersion characteristics of these sediments in the frequency band of 0.5-2.0 kHz.In the same band,the predictions obtained by using the Biot-Stoll model are significantly different from the measured data.展开更多
基金supported by the Basic Scientific Fund for National Public Research Institutes of China(No.GY0220Q09)the National Natural Science Foundation of China(Nos.41676055,41527809,42176191,and 41330965)+1 种基金the Opening Fund of Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0209)the Taishan Scholar Pro-ject Funding(No.tspd20161007).
文摘To accurately characterize the shear wave speed dispersion of seafloor sediments in the northern South China Sea,five types of sediments including silty clay,clayey silt,sandy silt,silty sand,and clayey sand were selected,on which the measurements of the shear wave speed at 0.5-2.0 kHz and related physical properties were performed.Results reveal that the shear wave speed of sediments increases as the frequency increases,and the dispersion enhanced in the sediments in the order of silty clay,clayey silt,sandy silt,silty sand,and clayey sand,at a linear change rate of 0.727,0.787,3.32,4.893,and 6.967 m s−1 kHz−1,respectively.Through regression analysis,linear and logarithmic regression equations for the correlation between shear wave speed and frequency were established for each sediment type and the determination coefficients of regression equations indicate that the correlation is closer to a logarithmic relationship.The Grain-Shearing(GS)and Biot-Stoll models were used to calculate the shear wave speed dispersion of the five sediment types,and the comparison between theoretical prediction and measured results of shear wave speeds shows that the GS model can more accurately describe the shear wave speed dispersion characteristics of these sediments in the frequency band of 0.5-2.0 kHz.In the same band,the predictions obtained by using the Biot-Stoll model are significantly different from the measured data.