期刊文献+
共找到3,021篇文章
< 1 2 152 >
每页显示 20 50 100
P-and SV-wave dispersion and attenuation in saturated microcracked porous rock with aligned penny-shaped fractures
1
作者 Sheng-Qing Li Wen-Hao Wang +2 位作者 Yuan-Da Su Jun-Xin Guo Xiao-Ming Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期143-161,共19页
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me... P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model. 展开更多
关键词 Aligned fractures P-and SV-wave dispersion and attenuation Microcracked porous background FB-WIFF Elastic scattering Squirt flow
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
2
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 Low-frequency measurements dispersion and attenuation Rock physics Fluid flow
下载PDF
Highly Efficient Broadband Achromatic Microlens Design Based on Low-Dispersion Materials
3
作者 Xueqian Wang Chuanbao Liu +7 位作者 Feilou Wang Weijia Luo Chengdong Tao Yuxuan Hou Lijie Qiao Ji Zhou Jingbo Sun Yang Bai 《Engineering》 SCIE EI CAS CSCD 2024年第7期194-200,共7页
Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this stu... Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy. 展开更多
关键词 Broadband achromatic focusing Metamaterials Low dispersion materials Visible wavelength MICROLENSES
下载PDF
CFD-PBM coupled modeling of the liquid-liquid dispersion characteristics and structure optimization for Kenics static mixer
4
作者 Junhai Deng Shilin Lan +4 位作者 Juchang Wu Shenghua Du Weidong Liu Luchang Han Yefeng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期173-188,共16页
Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its d... Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance. 展开更多
关键词 CFD Population balance Liquid-liquid dispersion Kenics static mixer
下载PDF
Effect of addition temperature on dispersion behavior and grain refinement efficiency of MgO introduced into Mg alloy
5
作者 Le ZAI Xin TONG +1 位作者 Yun WANG Xiao-huai XUE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2491-2506,共16页
The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematica... The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed. 展开更多
关键词 grain refinement MgO nucleation particles AZ31 alloy addition temperature dispersion behavior
下载PDF
Nonlinear wave dispersion in monoatomic chains with lumped and distributed masses:discrete and continuum models
6
作者 E.GHAVANLOO S.EL-BORGI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期633-648,共16页
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr... The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude. 展开更多
关键词 nonlinear mass-spring chain discrete model continuum model LindstedtPoincare method(LPM) method of multiple scales(MMS) dispersion phase velocity
下载PDF
Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation
7
作者 Jinnan Guo Daoyin Liu +2 位作者 Jiliang Ma Cai Liang Xiaoping Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期167-176,共10页
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-... The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient. 展开更多
关键词 Pressurized circulating fluidized bed MP-PIC method Residence time distribution Axial dispersion coefficient
下载PDF
Selective Impact of Dispersion and Nonlinearity on Waves and Solitary Wave in a Strongly Nonlinear and Flattened Waveguide
8
作者 Christian Regis Ngouo Tchinda Marcelle Nina Zambo Abou’ou Jean Roger Bogning 《Open Journal of Applied Sciences》 2024年第7期1730-1753,共24页
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide... The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions. 展开更多
关键词 Flattened Waveguide Solitary Wave Characteristic Coefficient Probabilities Propagation Nonlinear DISPERSIVE Partial Differential Equation
下载PDF
Experimental study on the dispersion behavior of a microemulsion collector and its mechanism for enhancing low-rank coal flotation 被引量:3
9
作者 Fan Lian Guosheng Li +3 位作者 Yijun Cao Baoxun Zhao Guangli Zhu Kai Fan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期893-901,共9页
As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic... As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic liquid microemulsion was used as a collector to enhance its floatability. Flotation test results demonstrated the microemulsion collector exhibited a superior collecting ability. A satisfactory separation performance of 78.66% combustible material recovery was obtained with the microemulsion collector consumption of 6 kg/t, which was equivalent to the flotation performance of diesel at a dosage of25 kg/t. The dispersion behavior of the microemulsion collector was investigated using the CryogenicTransmission Electron Microscopy. The interaction mechanism of the microemulsion collector on enhancing the low-rank coal flotation was elucidated through the Zeta potential and contact angle measurements, the Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis.The microemulsion collector exhibited superior dispersibility, which was dispersed into positively charged oil droplets with an average size of 160.21 nm in the pulp. Furthermore, the nano-oil droplets could be more efficiently adsorbed on the low-rank coal surface through electrostatic attraction, resulting in the improvement of its hydrophobicity. Thus, the microemulsion collector shows great application potential in improving the flotation performance of low-rank coal. 展开更多
关键词 MICROEMULSION dispersion Nano-oil droplets FLOTATION Interaction mechanisms
下载PDF
Sensitivity of seismic attenuation and dispersion to dynamic elastic interactions of connected fractures: Quasi-static finite element modeling study 被引量:2
10
作者 Yan-Xiao He Wen-Tao He +8 位作者 Meng-Fan Zhang Jia-Liang Zhang Wei-Hua Liu Xiao-Yi Ma Gen-Yang Tang Shang-Xu Wang Guo-Fa Li Jun-Zhou Liu Xiang-Long Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期177-198,共22页
Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in th... Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in the characterization of fractured formations.This has been very difficult,however,considering that stress interactions between fractures and pores,related to their spatial distributions,tend to play a crucial role on affecting overall dynamic elastic properties that are largely unexplored.We thus choose to quantitatively investigate frequency-dependent P-wave characteristics in fractured porous rocks at the scale of a representative sample using a numerical scale-up procedure via performing finite element modelling.Based on 2-D numerical quasi-static experiments,effects of fracture and fluid properties on energy dissipation in response to wave-induced fluid flow at the mesoscopic scale are quantified via solving Biot's equations of consolidation.We show that numerical results are sensitive to some key characteristics of probed synthetic rocks containing unconnected and connected fractures,demonstrating that connectivity,aperture and inclination of fractures as well as fracture infills exhibit strong impacts on the two manifestations of WIFF mechanisms in the connected scenario,and on resulting total wave attenuation and phase velocity.This,in turn,illustrates the importance of these two WIFF mechanisms in fractured rocks and thus,a deeper understanding of them may eventually allow for a better characterization of fracture systems using seismic methods.Moreover,this presented work combines rock physics predictions with seismic numerical simulations in frequency domain to illustrate the sensitivity of seismic signatures on the monitoring of an idealized geologic CO_(2) sequestration in fractured reservoirs.The simulation demonstrates that these two WIFF mechanisms can strongly modify seismic records and hence,indicating that incorporating the two energy dissipation mechanisms in the geophysical interpretation can potentially improving the monitoring and surveying of fluid variations in fractured formations. 展开更多
关键词 Attenuation and dispersion Rock physics Fractured media Frequency dependence Numerical study
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
11
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals 被引量:1
12
作者 金兆年 何宣霖 +3 位作者 于超 方贺男 陈琳 陶志阔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期692-696,共5页
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ... We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices. 展开更多
关键词 SKYRMION magnonic crystal spin wave dispersion relation
下载PDF
A nonparametric spectrum estimation method for dispersion and attenuation analysis of borehole acoustic measurements
13
作者 Bing Wang Wei Li +1 位作者 Qing Ye Kun-Yu Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期241-248,共8页
Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteri... Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave. 展开更多
关键词 dispersion analysis Attenuation factor Nonparametric spectrum estimation method Acoustic logging Fluid type evaluation
下载PDF
Effect of potential difference between nano-Al_(2)O_(3)whisker and Mg matrix on the dispersion of Mg composites
14
作者 Xiaoying Qian Hong Yang +6 位作者 Chunfeng Hu Ying Zeng Yuanding Huang Xin Shang Yangjie Wan Bin Jiang Qingguo Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期104-111,共8页
The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecy... The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample. 展开更多
关键词 magnesium-based composites Al_(2)O_(3)whiskers potential difference dispersion
下载PDF
Can the Prediction of Intrauterine Insemination Results by Used Aniline Blue Stain (ABS) and Sperm Chromatin Dispersion (SCD) Levels?
15
作者 Talal Z. Al-Darawsha Nurten Dayioglu +1 位作者 Bushra R. Al-Azzawi Tulay Irez 《Advances in Reproductive Sciences》 CAS 2023年第1期1-10,共10页
Introduction: This study aimed to perform routine seminal fluid analysis, sperm DNA fragmentation, and sperm function tests at the chromatin maturation level and evaluate pregnancy in the patients passing intrauterine... Introduction: This study aimed to perform routine seminal fluid analysis, sperm DNA fragmentation, and sperm function tests at the chromatin maturation level and evaluate pregnancy in the patients passing intrauterine insemination before starting Intrauterine Insemination (IUI) method. Materials and Methods: In this prospective study, 111 couples who underwent Intrauterine Insemination (IUI) in unexplained infertility patients were admitted to Al-Farah IVF and assisted reproductive center in Baghdad, Iraq between November 2020 and February 2021 were evaluated. Semen fluid analysis was performed based on (WHO 4th) guiding rules. In addition, Sperm Chromatin Dispersion (halo test) and sperm maturation were performed with Aniline Blue Stain (ABS). Results: Sperm Chromatin Dispersion (SCD) groups were compared in terms of pregnancy outcome;the positive pregnancy rate was found to be above in the normal SCD groups (p = 0.0005). In addition, Aniline Blue Stain (ABS) groups were compared in the terms of pregnancy outcome;the positive pregnancy rate was found to be higher in the normal ABS group (p = 0.017). Conclusion: Our study showed that the use of DNA fragmentation (SCD) and sperm maturation tests (ABS) together with routine semen analysis in intrauterine insemination cases will make a significant contribution to the prediction of Intrauterine Insemination (IUI) increased results. So, these results indicate a defect in the effect of DNA fragmentation on the outcome of intrauterine insemination. 展开更多
关键词 Sperm Chromatin dispersion Aniline Blue Stain Sperm DNA Fragmentation Intrauterine Insemination
下载PDF
Development and Evaluation of Stable Paracetamol Loaded Solid Dispersion with Enhanced Analgesic and Hepatoprotective Property
16
作者 Ashim Kumar Milon Kumar Ghosh +4 位作者 Mst. Boby Aktar Bithy Md. Rafiqul Islam Khan Md. Monimul Huq Mir Imam Ibne Wahed Ranjan Kumar Barman 《Pharmacology & Pharmacy》 2023年第4期123-143,共21页
Paracetamol (PCM) is enlisted in the WHO model list as an essential medicine for pain and palliative care, but at overdose, it causes hepatic damage. This study was designed to assess the analgesic efficacy and hepato... Paracetamol (PCM) is enlisted in the WHO model list as an essential medicine for pain and palliative care, but at overdose, it causes hepatic damage. This study was designed to assess the analgesic efficacy and hepatoprotective property of a solid dispersion (SD) loaded with PCM. A number of PCM loaded formulations (PSDs) were fabricated using silica alone or in combination with polyethylene glycol and/or Na-citrate followed by in-vitro dissolution profiling. Selected PSDs with improved dissolution profile were subjected to solid-state characterization (DSC, PXRD, FTIR, and SEM), stability study along with investigation of in-vivo analgesic efficacy and effect on hepatocytes. Among these, PSD10 showed a rapid and significantly higher in-vitro drug release than pure PCM. This improvement was distinct to other PSDs also. Solid-state characterization of PSD10 authenticated the conversion of crystalline PCM to amorphous form upon formulation. Subsequent oral administration of PSD10 in Swiss albino mice showed 1.44-fold greater analgesic efficacy than pure PCM at dose 30 mg/kg. Besides, at acute toxic dose, liver histology of PSD10 mice was comparable with NC mice indicating hepatic protection upon formulation, whereas the PCM mice showed extensive hepatic necrosis which was also endorsed by significantly higher values of SGPT, SGOT, and ALP than PSD10 mice. Finally, an accelerated stability study of PSD10 performed according to the guideline of ICH noticed no remarkable deviation in its dissolution performance as well as crystalline nature. Thus, this newly developed PSD10 may be a safe and promising alternative for pain management and palliative care. 展开更多
关键词 PARACETAMOL Solid dispersion DISSOLUTION Analgesic Activity HEPATOCYTE Particle Surface Property Stability
下载PDF
A simple atomization approach enables monolayer dispersion of nano graphenes in cementitious composites with excellent strength gains
17
作者 Nanxi Dang Rijiao Yang +4 位作者 Chengji Xu Yu Peng Qiang Zeng Weijian Zhao Zhidong Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期211-222,共12页
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple... Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects. 展开更多
关键词 NANOMATERIALS dispersion ATOMIZATION STRENGTH Microstructure
下载PDF
Discussion on“Dispersion characteristics of clayey soils containing waste rubber particles”[J Rock Mech Geotech Eng 15(2023)3050-3058]
18
作者 Prithvendra Singh Devendra Narain Singh Pintu Kumar Saw 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3864-3865,共2页
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s... We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature. 展开更多
关键词 Waste rubber particles dispersion characteristics CLAY BENTONITE Scientific literature DISCUSSION
下载PDF
Overview of computation strategies on the dispersion analysis for explicit finite difference solution of acoustic wave equation
19
作者 Jian-Ping Huang Wei-Ting Peng +1 位作者 Ji-Dong Yang Lu-Feng Lou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2311-2328,共18页
Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval ... Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval can lead to dispersion errors and numerical instability.In the FD scheme,the key factor in determining both dispersion errors and stability is the selection of the FD weights.Thus,How to obtain appropriate FD weights to guarantee a stable numerical modeling process with minimum dispersion error is critical.The FD weights computation strategies can be classified into three types based on different computational ideologies,window function strategy,optimization strategy,and Taylor expansion strategy.In this paper,we provide a comprehensive overview of these three strategies by presenting their fundamental theories.We conduct a set of comparative analyses of their strengths and weaknesses through various analysis tests and numerical modelings.According to these comparisons,we provide two potential research directions of this field:Firstly,the development of a computational strategy for FD weights that enhances stability;Secondly,obtaining FD weights that exhibit a wide bandwidth while minimizing dispersion errors. 展开更多
关键词 Finite-difference scheme FD coefficients dispersion error Forward modeling Numerical simulation
下载PDF
Real-time data processing method for CO_(2) dispersion interferometer on EAST
20
作者 张家敏 姚远 +6 位作者 刘郁阳 储宇奇 阮天翼 张耀 刘海庆 揭银先 凌必利 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期121-126,共6页
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to... A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation. 展开更多
关键词 dispersion interferometer REAL-TIME electron density FPGA EAST
下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部