Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Bra...Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.展开更多
The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-ar...The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the internal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vol%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single γ-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD);the HRB hardness of the ADSC can be as high as 95;the outcomes should be attributed to the pinning effect of nano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for 1 h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.展开更多
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(YSZN2013CLD6)supported by the Nonferrous Metals Science Foundation of HNG-CSU+1 种基金ChinaProject supported by the Program Between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)
文摘Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.
文摘The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the internal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vol%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single γ-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD);the HRB hardness of the ADSC can be as high as 95;the outcomes should be attributed to the pinning effect of nano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for 1 h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.