The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ...The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).展开更多
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos...Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.展开更多
In this paper we develop a kind of dissipative discrete scheme for the computation of homoclinic orbits near TB-point in Hamiltonian systems. It is proved by using continuation method that when the dissipative term an...In this paper we develop a kind of dissipative discrete scheme for the computation of homoclinic orbits near TB-point in Hamiltonian systems. It is proved by using continuation method that when the dissipative term and its coefficient are suitably chosen, this scheme possesses discrete homoclinic orbits, which approximate the continuous homoclinic orbits with second order accuracy w.r. to time-step size.展开更多
A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an o...A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.展开更多
In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the...In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.展开更多
A finite difference lattice Boltzmann method of second-order accuracy in time is developed based on non-oscillatory scheme with no-free-parameter dissipation (NND) difference scheme in this paper. The NND lattice Bo...A finite difference lattice Boltzmann method of second-order accuracy in time is developed based on non-oscillatory scheme with no-free-parameter dissipation (NND) difference scheme in this paper. The NND lattice Boltzmann method is used to simulate high-speed flows by constructing a new equilibrium distribution function of the lattice Boltzmann method. Compared with a variation of lattice Boltzmann method developed by Qu, et al., the present method can capture shock waves and handle oscillations of high velocity flows accurately in larger time steps and in shorter computing time. Numerical results indicate the correctness and capability of simulating shock wave interactions of the NND lattice Boltzmann method.展开更多
A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains,...A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains, and the convection items are discretized with the spatial three-order weighted non-oscillatory and non-free-parameter dissipation difference (WNND) scheme. The turbulence model adopts q-co low-Reynolds-number model. The frequency specmuns of lift coefficients and the unsteady pressure-difference coefficients at different spanwise heights as well as the entropy contours at blade tips on different vibrating instants, are obtained. By the analysis of frequency specmuns of lift coefficients at three spanwise heights, it is considered that there exist obvious non-linear perturbations in the flow induced by the vibrating, and the perturbation frequencies are higher than the basic frequency. The entropy contours at blade tips at different times display an intensively unsteady attribute of the flow under large amplitudes.展开更多
We construct new fifth-order alternative WENO(A-WENO)schemes for the Euler equations of gas dynamics.The new scheme is based on a new adaptive diffusion centralupwind Rankine-Hugoniot(CURH)numerical flux.The CURH nume...We construct new fifth-order alternative WENO(A-WENO)schemes for the Euler equations of gas dynamics.The new scheme is based on a new adaptive diffusion centralupwind Rankine-Hugoniot(CURH)numerical flux.The CURH numerical fluxes have been recently proposed in[Garg et al.J Comput Phys 428,2021]in the context of secondorder semi-discrete finite-volume methods.The proposed adaptive diffusion CURH flux contains a smaller amount of numerical dissipation compared with the adaptive diffusion central numerical flux,which was also developed with the help of the discrete RankineHugoniot conditions and used in the fifth-order A-WENO scheme recently introduced in[Wang et al.SIAM J Sci Comput 42,2020].As in that work,we here use the fifth-order characteristic-wise WENO-Z interpolations to evaluate the fifth-order point values required by the numerical fluxes.The resulting one-and two-dimensional schemes are tested on a number of numerical examples,which clearly demonstrate that the new schemes outperform the existing fifth-order A-WENO schemes without compromising the robustness.展开更多
In the present paper, a class of explicit forward time-difference schemes are established from a geometric view with strict analytical deductions. This class includes the schemes with a constant time interval and with...In the present paper, a class of explicit forward time-difference schemes are established from a geometric view with strict analytical deductions. This class includes the schemes with a constant time interval and with adjustable time intervals, which is proved to be effective and remarkably time-saving in numerical tests and applications.展开更多
An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in orde...An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.展开更多
In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from th...In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.展开更多
Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing ...Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm^(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m^(-2).展开更多
Developing high resolution finite difference scheme and enabling the use of this scheme on complex geometry are the aims of this study.High resolution has been achieved by Dissipative Compact Schemes(DCS),however,acco...Developing high resolution finite difference scheme and enabling the use of this scheme on complex geometry are the aims of this study.High resolution has been achieved by Dissipative Compact Schemes(DCS),however,according to the recent research,applications of DCS on complex geometry may have serious problem for that the Geometric Conservation Law(GCL)is not satisfied,and this may cause numerical instability.To cope with this problem,a new scheme named Hybrid cell-edge and cell-node Dissipative Compact Scheme(HDCS)has been formulated.The formulation of the HDCS contains two steps.First,a new central compact scheme is formulated for the purpose of conveniently fulfilling the GCL,and then dissipation is added on the central scheme by high-order dissipative interpolation of cell-edge variables.The solutions of Euler and Navier-Stokes equations show that the HDCS can be applied successfully on complex geometry,while the DCS may suffer numerical instabilities.Moreover,high resolution of the HDCS may be observed in the test of scattering of acoustic waves by multiple cylinders.展开更多
基金the National Outstanding Youth Scientist Foundation of China (GrantNo. 49825109), the Key Innovation Project of Chinese Academ
文摘The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).
基金the Outstanding State Key Laboratory Project of National Science Foundation of China (Grant No. 40023001 )the Key Innovatio
文摘Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.
文摘In this paper we develop a kind of dissipative discrete scheme for the computation of homoclinic orbits near TB-point in Hamiltonian systems. It is proved by using continuation method that when the dissipative term and its coefficient are suitably chosen, this scheme possesses discrete homoclinic orbits, which approximate the continuous homoclinic orbits with second order accuracy w.r. to time-step size.
基金Project supported by the National Natural Science Foundation of China(Nos.11601517,11502296,61772542,and 61561146395)the Basic Research Foundation of National University of Defense Technology(No.ZDYYJ-CYJ20140101)
文摘A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.
基金NKBRSF CG 1990 3 2 80 5 National Natural Science F oundation of China !( No.5 98760 0 2 )
文摘In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.
基金Project supported by the Aeronautics Science Foundation (Grant No.20061431)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0844)
文摘A finite difference lattice Boltzmann method of second-order accuracy in time is developed based on non-oscillatory scheme with no-free-parameter dissipation (NND) difference scheme in this paper. The NND lattice Boltzmann method is used to simulate high-speed flows by constructing a new equilibrium distribution function of the lattice Boltzmann method. Compared with a variation of lattice Boltzmann method developed by Qu, et al., the present method can capture shock waves and handle oscillations of high velocity flows accurately in larger time steps and in shorter computing time. Numerical results indicate the correctness and capability of simulating shock wave interactions of the NND lattice Boltzmann method.
基金This Project is supported by National Natural Science Foundation of China (No.50776056)National Hi-tech Research and Development Program of China (863 Program,No.2006AA05Z250).
文摘A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains, and the convection items are discretized with the spatial three-order weighted non-oscillatory and non-free-parameter dissipation difference (WNND) scheme. The turbulence model adopts q-co low-Reynolds-number model. The frequency specmuns of lift coefficients and the unsteady pressure-difference coefficients at different spanwise heights as well as the entropy contours at blade tips on different vibrating instants, are obtained. By the analysis of frequency specmuns of lift coefficients at three spanwise heights, it is considered that there exist obvious non-linear perturbations in the flow induced by the vibrating, and the perturbation frequencies are higher than the basic frequency. The entropy contours at blade tips at different times display an intensively unsteady attribute of the flow under large amplitudes.
基金The work of B.S.Wang and W.S.Don was partially supported by the Ocean University of China through grant 201712011The work of A.Kurganov was supported in part by NSFC grants 11771201 and 1201101343by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘We construct new fifth-order alternative WENO(A-WENO)schemes for the Euler equations of gas dynamics.The new scheme is based on a new adaptive diffusion centralupwind Rankine-Hugoniot(CURH)numerical flux.The CURH numerical fluxes have been recently proposed in[Garg et al.J Comput Phys 428,2021]in the context of secondorder semi-discrete finite-volume methods.The proposed adaptive diffusion CURH flux contains a smaller amount of numerical dissipation compared with the adaptive diffusion central numerical flux,which was also developed with the help of the discrete RankineHugoniot conditions and used in the fifth-order A-WENO scheme recently introduced in[Wang et al.SIAM J Sci Comput 42,2020].As in that work,we here use the fifth-order characteristic-wise WENO-Z interpolations to evaluate the fifth-order point values required by the numerical fluxes.The resulting one-and two-dimensional schemes are tested on a number of numerical examples,which clearly demonstrate that the new schemes outperform the existing fifth-order A-WENO schemes without compromising the robustness.
基金Partly supported by the State Major Key Project for Basic Researches of China
文摘In the present paper, a class of explicit forward time-difference schemes are established from a geometric view with strict analytical deductions. This class includes the schemes with a constant time interval and with adjustable time intervals, which is proved to be effective and remarkably time-saving in numerical tests and applications.
基金supported by the National Natural Science Foundation of China (No.90510018)
文摘An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.
文摘In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.
基金partially supported by the National Science Foundation of China(Grant Nos.41205100,41375136 and 41405127)the Beijing Municipal Science and Technology Commission(Project No.Z141100001014017)the National Department of Public Benefit Research Foundation of China(Grant No.GYHY201306065)
文摘Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm^(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m^(-2).
基金supported by the National Basic Research Program of China(Grant no.2009CB723800)National Natural Science Foundation of China(Grand Nos.11072259 and 11202226)the Foundation of State Key Laboratory of Aerodynamics(Grand Nos.JBKY11030902 and JBKY11010100)
文摘Developing high resolution finite difference scheme and enabling the use of this scheme on complex geometry are the aims of this study.High resolution has been achieved by Dissipative Compact Schemes(DCS),however,according to the recent research,applications of DCS on complex geometry may have serious problem for that the Geometric Conservation Law(GCL)is not satisfied,and this may cause numerical instability.To cope with this problem,a new scheme named Hybrid cell-edge and cell-node Dissipative Compact Scheme(HDCS)has been formulated.The formulation of the HDCS contains two steps.First,a new central compact scheme is formulated for the purpose of conveniently fulfilling the GCL,and then dissipation is added on the central scheme by high-order dissipative interpolation of cell-edge variables.The solutions of Euler and Navier-Stokes equations show that the HDCS can be applied successfully on complex geometry,while the DCS may suffer numerical instabilities.Moreover,high resolution of the HDCS may be observed in the test of scattering of acoustic waves by multiple cylinders.