In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4...In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.展开更多
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) ...A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.展开更多
A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid ...A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.展开更多
Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey sa...Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.展开更多
Isomeric triterpenic acids of oleanolic acid (OA) and ursolic acid (UA) both have very low ultraviolet absorption and always exist in the same plant, so the separation and simultaneous determination of them have been ...Isomeric triterpenic acids of oleanolic acid (OA) and ursolic acid (UA) both have very low ultraviolet absorption and always exist in the same plant, so the separation and simultaneous determination of them have been a difficult task. In this study, a sensitive method combining dispersive liquid-liquid microextraction (DLLME) with HPLC-UV was developed for the extraction and determination of OA and UA in traditional Chinese medicinal herbs (CMHs). Variables influencing DLLME such as type and volume of extraction solvent, volume of dispersive solvent, ionic strength, aqueous phase pH, extraction time, centrifugation speed and time, and sample volume were investigated and optimized. Under the optimum conditions, both OA and UA attained favorable extraction efficiencies with enrichment factors 1378 and 933, respectively. The linear dynamic ranges of 0.07 - 30.4 μg?mL–1 for OA and 0.08 - 33.6 μg?mL–1 for UA were obtained with square correlation coefficients of 0.9963. The detection limits of OA and UA were both 0.02 μg?mL–1. The method recoveries ranged between 88.2% - 116.2% for OA and 85.7% - 108.2% for UA with the RSDs (n = 5) lower than 8.6%. The proposed method was successfully applied to concentrate and simultaneously determine these two triterpenic acids in Hedyotis diffusa and Eriobotrya japonica samples.展开更多
A new method for the determination of cobalt was developed by dispersive liquid-liquid microextraction preconcentra-tion and flame atomic absorption spectrometry. In the proposed approach, 1,5-bis(di-2-pyridyl) methyl...A new method for the determination of cobalt was developed by dispersive liquid-liquid microextraction preconcentra-tion and flame atomic absorption spectrometry. In the proposed approach, 1,5-bis(di-2-pyridyl) methylene thiocarbohydrazide (DPTH) was used as a chelating agent, and chloroform and ethanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of cobalt and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent, and extraction time, were studied and optimized. Under the optimum conditions, a preconcentration factor of 8 was reached. The detection limit for cobalt was 12.4 ng?mL–1, and the relative standard deviation (RSD) was 3.42% (n = 7, c = 100 ng?mL–1). The method was successfully applied to the determination of cobalt in food, environmental and water samples.展开更多
This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-ductio...This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-duction system capable of quantifying trace amounts of lead. In the proposed approach, ammonium pyr-rolidine dithiocarbamate (APDC) was used as a chelating agent and 1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl)imid as an extraction solvent was dissolved in acetone as the disperser solvent. The binary solution was then rapidly injected by a syringe into the water sample containing Pb2+ complex. Some factors influencing the extraction efficiency of Pb2+ and its subsequent determination, including extraction and dispersive solvent type, pH of sample solution, concentration of the chelating agent and salt effect were inspected by a full factorial design to identify important parameters and their interactions. Next, a central composite design was applied to obtain the optimum points of the important parameters. Under the optimum conditions, the limit of detection (LOD) was 0.2 μg/L. The relative standard deviation (R.S.D) was 1.4% for 5 μg/L of Pb2+ (n = 7). The relative recovery of lead in seawater, blood, tomato and black tea samples was measured.展开更多
Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene be...Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation was synthesized and used. The related parameters including ligand concentration, the volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit(S/N=3) and precision(RSD, n=6) were determined to be 0.2―50, 0.07 μg/L and 5.3%, respectively. The results reveal that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems.展开更多
A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction (DLLME) combining with high performance liquid chromatography (HPLC) was developed for the analysis of four toxic anilines i...A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction (DLLME) combining with high performance liquid chromatography (HPLC) was developed for the analysis of four toxic anilines in flour steamed bread and maize steamed bread. Several possible influential factors such as the type of ionic liquid and disperser solvent, extraction time, sample pH, ionic strength and the volume of ionic liquid and disperser solvent were optimized using single factor experiments and orthogonal array design (OAD) with OA25(54) matrix. Analysis of variance (ANOVA) and percent contribution (PC) were used to investigate the significance of the factors of OAD. Sample pH and ionic strength are statistically demonstrated two chief factors. Under the optimum condition, the method exhibits a good linearity (r2 〉 0.99) over the studied range (50-1000 ng g-l) for anilines. The extraction factors and recoveries for the anilines in two kinds of steamed breads ranged between 34.1%-73.3% and 44.3%-95.3%, respectively. The limit of detections (LODs) and limit of quantitations (LOQs) ranged be- tween 10-15 ng g-1 and 30--45 ng g-1.展开更多
A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floatin...A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.展开更多
A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shri...A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste. The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis. The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5, volume ratio), flow rate was 0.7 mL/min and UV wavelength was 476 nm. Under optimal conditions, good linearity was obtained in a range of 0.2--200.0 lug/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 Hg/mL, and the extraction recoveries at three spiked levels ranged from 88.3%--92.5% with a relative standard deviation(RSD) less than 4.3%. Moreover, the mean contents of astaxanthin in the three batches of shrimp waste were 95.9, 85.4 and 77.2 μg/g, respectively. This method combining the advantages of MISPE and DLLME results in high selectivity and low cost, which was applied to determining the astaxanthin level in shrimp waste samples.展开更多
A simple and rapid sample preparation method of dispersive liquid-liquid microextraction(DLLME) was applied in the simultaneous determination of six parabens in the aqueous cosmetics. The analysis was performed on g...A simple and rapid sample preparation method of dispersive liquid-liquid microextraction(DLLME) was applied in the simultaneous determination of six parabens in the aqueous cosmetics. The analysis was performed on gas chromatography coupled with a flame ionization detection(GC-FID). The mixed solution containing 30 μL of chloroform(extraction solvent) and 300 μL of tetrahydrofuran(dispersive solvent) was rapidly injected into the sample solution for the purpose of microextraction. After that, the solution mentioned above was centrifuged at 4000 r/min for 10 min, and then the organic sediment phase was detected by GC-FID. The effects of experimental parameters, such as the extraction solvent and the volume of it, and the dispersive solvent and the volume of it, on the yield of the extraction were studied in detail. Under the optimum conditions, the enrichment factors of the target analytes range from 87 to 214. Linearity ranges are 0.05-10.0μg/mL for methylparaben and 0.025--5.0 μg/mL for the other five parabens. The relative standard deviations(RSDs) are lower than 8.2%(n=6). The proposed method was applied to the analysis of six parabens in eleven aqueous cosmetics. The recoveries of the target analytes in the spiked real samples are in the range of 81.0%-103%.展开更多
As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) c...As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS),triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples.Significant parameters that may affect extraction efficiencies were examined and optimized,including the types and amount of ionic liquids,volume of the diluent,heating temperature,cooling time,salt effect and pH value.Under the optimum conditions,linearity of the method was observed in the ranges of 0.0100-100 μgL-1 for TCS and M-TCS,and 0.00500-50.0 μgL-1 for TCC with correlation coefficients (r2) 】 0.9903.The limits of detection (LODs) ranged from 1.15 to 5.33 ngL-1.TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μgL-1,respectively.The spiked recoveries of the three target compounds in reclaimed water,irrigating water,waste water and domestic water samples were obtained in the ranges of 68.4%-71.9%,61.6%-87.8%,58.9%-74.9% and 64.9%-92.4%,respectively.Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS,TCC and M-TCS,this method is not only more environmentally friendly but also more sensitive.展开更多
A novel temperature controlled ionic liquid dispersive liquid phase microextracfion (TCIL-DLPME) coupled with rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-ESI-MS-MS) has been ...A novel temperature controlled ionic liquid dispersive liquid phase microextracfion (TCIL-DLPME) coupled with rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-ESI-MS-MS) has been developed for the enrichment and determination of three hexabromocyclododecane diastereomers (HBCDs) in water samples. Green solvent ionic liquid (IL) was used as extraction solvent instead of toxic organic solvents. This technique also avoided the usage of dispersive solvent. Some important parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. All the limits of detection for the three diastereomers were 0.1 ng/ mL. The linear range was obtained in the range of 1-100 ng/mL for the total amount of three HBCD diastereomers. It was satisfactory to analyze real environmental water samples with the recoveries ranging from 77.2% to 99.3%. The main advantage of the method is toxic organic solvent-free.展开更多
A simple and rapid dispersive liquid–liquid microextraction(DLLME)technique coupled with gas chromatography–ion trap mass spectrometry(GC–MS)was developed for the extraction and analysis of methamphetamine(MA),peth...A simple and rapid dispersive liquid–liquid microextraction(DLLME)technique coupled with gas chromatography–ion trap mass spectrometry(GC–MS)was developed for the extraction and analysis of methamphetamine(MA),pethidine(PD),ketamine(KT)and tramadol(TD)from human urine.In this study,different parameters affecting the extraction process such as the type and volume of extraction solvent,type and volume of disperser solvent,extraction time and pH value and salt effect were studied and optimized.Under optimized conditions,the enrichment factor ranged from 185 to 226 and the average recovery ranged from 80.45%to 95.55%.The linear range was 10.0–1000.0 mg/L,the limit of detection and quantitation were in the range 0.43–1.96 mg/L and 1.44–6.53 mg/L,respectively.The relative standard deviations were in the range 1.98%–3.90%(n=7).The obtained results show that DLLME combined with GC–MS is a fast and simple method for the determination of MA,PD,KT and TD in human urine.展开更多
A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such a...A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine,simazine,and atrazine in water samples.1-Octyl-3-methylimidazolium hexafluorophosphate([C8MIM][PF6]) was selected as the extraction solvent.Several experimental parameters were optimized.Under the optimal conditions,the linear range for cyanazine was in the concentration range of 0.5–80 mg/L and the linear range for simazine and atrazine was in the range of1.0–100 mg/L.The limit of detection(LOD,S/N = 3) was in the ranges of 0.05–0.06 mg/L,and the intra day and inter day precision(RSDs,n = 6) was in the ranges of 3.2%–6.6% and 4.8%–8.9%,respectively.Four real water samples were analyzed with the developed method,and the experimental results showed that the spiked recoveries were satisfactory.All these exhibited that the developed method was a valuable tool for monitoring such pollutants.展开更多
Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver n...Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver nanoparticles(AgN Ps)from environmental water samples.Parameters that influenced the extraction efficiency such as IL concentration,pH and extraction time were optimized.Under the optimized conditions,the highest extraction efficiency for AgN Ps was above 90% with an enrichment factor of 〉90.The extracted AgN Ps in the IL phase were identified by transmission electron microscopy and ultraviolet–visible spectroscopy,and quantified by inductively coupled plasma mass spectrometry after microwave digestion,with a detection limit of 0.01 μg/L.The spiked recovery of AgN Ps was 84.4% with a relative standard deviation(RSD)of 3.8%(n = 6)at a spiked level of 5 μg/L,and 89.7% with a RSD of 2.2%(n = 6)at a spiked level of 300 μg/L,respectively.Commonly existed environmental ions had a very limited influence on the extraction efficiency.The developed method was successfully applied to the analysis of Ag NPs in river water,lake water,and the influent and effluent of a wastewater treatment plant,with recoveries in the range of 71.0%–90.9% at spiking levels of 0.11–4.7 μg/L.展开更多
基金the National Natural Science Foundation of China(Nos.20375035,20527005,20775070)by Zhejiang Provincial Natural Science Foundation of China(Nos.Z404105,Y507252).
文摘In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.
基金supported both by the Natural Science Foundations of Hebei(No.B2008000210)the Scientific Research Foundation of Agricultural University of Hebei.
文摘A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.
基金supported by Science Research Funds of Medical Course, HUST
文摘A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.
文摘Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.
文摘Isomeric triterpenic acids of oleanolic acid (OA) and ursolic acid (UA) both have very low ultraviolet absorption and always exist in the same plant, so the separation and simultaneous determination of them have been a difficult task. In this study, a sensitive method combining dispersive liquid-liquid microextraction (DLLME) with HPLC-UV was developed for the extraction and determination of OA and UA in traditional Chinese medicinal herbs (CMHs). Variables influencing DLLME such as type and volume of extraction solvent, volume of dispersive solvent, ionic strength, aqueous phase pH, extraction time, centrifugation speed and time, and sample volume were investigated and optimized. Under the optimum conditions, both OA and UA attained favorable extraction efficiencies with enrichment factors 1378 and 933, respectively. The linear dynamic ranges of 0.07 - 30.4 μg?mL–1 for OA and 0.08 - 33.6 μg?mL–1 for UA were obtained with square correlation coefficients of 0.9963. The detection limits of OA and UA were both 0.02 μg?mL–1. The method recoveries ranged between 88.2% - 116.2% for OA and 85.7% - 108.2% for UA with the RSDs (n = 5) lower than 8.6%. The proposed method was successfully applied to concentrate and simultaneously determine these two triterpenic acids in Hedyotis diffusa and Eriobotrya japonica samples.
文摘A new method for the determination of cobalt was developed by dispersive liquid-liquid microextraction preconcentra-tion and flame atomic absorption spectrometry. In the proposed approach, 1,5-bis(di-2-pyridyl) methylene thiocarbohydrazide (DPTH) was used as a chelating agent, and chloroform and ethanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of cobalt and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent, and extraction time, were studied and optimized. Under the optimum conditions, a preconcentration factor of 8 was reached. The detection limit for cobalt was 12.4 ng?mL–1, and the relative standard deviation (RSD) was 3.42% (n = 7, c = 100 ng?mL–1). The method was successfully applied to the determination of cobalt in food, environmental and water samples.
文摘This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-duction system capable of quantifying trace amounts of lead. In the proposed approach, ammonium pyr-rolidine dithiocarbamate (APDC) was used as a chelating agent and 1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl)imid as an extraction solvent was dissolved in acetone as the disperser solvent. The binary solution was then rapidly injected by a syringe into the water sample containing Pb2+ complex. Some factors influencing the extraction efficiency of Pb2+ and its subsequent determination, including extraction and dispersive solvent type, pH of sample solution, concentration of the chelating agent and salt effect were inspected by a full factorial design to identify important parameters and their interactions. Next, a central composite design was applied to obtain the optimum points of the important parameters. Under the optimum conditions, the limit of detection (LOD) was 0.2 μg/L. The relative standard deviation (R.S.D) was 1.4% for 5 μg/L of Pb2+ (n = 7). The relative recovery of lead in seawater, blood, tomato and black tea samples was measured.
基金Supported by the Islamic Azad University(Shahreza Branch)the Iran Nanotechnology Initiative Council
文摘Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation was synthesized and used. The related parameters including ligand concentration, the volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit(S/N=3) and precision(RSD, n=6) were determined to be 0.2―50, 0.07 μg/L and 5.3%, respectively. The results reveal that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems.
基金supported by the National Natural Science Foundation of China (20905073 & 20975105)
文摘A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction (DLLME) combining with high performance liquid chromatography (HPLC) was developed for the analysis of four toxic anilines in flour steamed bread and maize steamed bread. Several possible influential factors such as the type of ionic liquid and disperser solvent, extraction time, sample pH, ionic strength and the volume of ionic liquid and disperser solvent were optimized using single factor experiments and orthogonal array design (OAD) with OA25(54) matrix. Analysis of variance (ANOVA) and percent contribution (PC) were used to investigate the significance of the factors of OAD. Sample pH and ionic strength are statistically demonstrated two chief factors. Under the optimum condition, the method exhibits a good linearity (r2 〉 0.99) over the studied range (50-1000 ng g-l) for anilines. The extraction factors and recoveries for the anilines in two kinds of steamed breads ranged between 34.1%-73.3% and 44.3%-95.3%, respectively. The limit of detections (LODs) and limit of quantitations (LOQs) ranged be- tween 10-15 ng g-1 and 30--45 ng g-1.
基金supported by the Natural Science Foundation of Hebei(No.B2010000657)
文摘A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.
文摘A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste. The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis. The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5, volume ratio), flow rate was 0.7 mL/min and UV wavelength was 476 nm. Under optimal conditions, good linearity was obtained in a range of 0.2--200.0 lug/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 Hg/mL, and the extraction recoveries at three spiked levels ranged from 88.3%--92.5% with a relative standard deviation(RSD) less than 4.3%. Moreover, the mean contents of astaxanthin in the three batches of shrimp waste were 95.9, 85.4 and 77.2 μg/g, respectively. This method combining the advantages of MISPE and DLLME results in high selectivity and low cost, which was applied to determining the astaxanthin level in shrimp waste samples.
文摘A simple and rapid sample preparation method of dispersive liquid-liquid microextraction(DLLME) was applied in the simultaneous determination of six parabens in the aqueous cosmetics. The analysis was performed on gas chromatography coupled with a flame ionization detection(GC-FID). The mixed solution containing 30 μL of chloroform(extraction solvent) and 300 μL of tetrahydrofuran(dispersive solvent) was rapidly injected into the sample solution for the purpose of microextraction. After that, the solution mentioned above was centrifuged at 4000 r/min for 10 min, and then the organic sediment phase was detected by GC-FID. The effects of experimental parameters, such as the extraction solvent and the volume of it, and the dispersive solvent and the volume of it, on the yield of the extraction were studied in detail. Under the optimum conditions, the enrichment factors of the target analytes range from 87 to 214. Linearity ranges are 0.05-10.0μg/mL for methylparaben and 0.025--5.0 μg/mL for the other five parabens. The relative standard deviations(RSDs) are lower than 8.2%(n=6). The proposed method was applied to the analysis of six parabens in eleven aqueous cosmetics. The recoveries of the target analytes in the spiked real samples are in the range of 81.0%-103%.
基金the support from the National High Technology Research and Development Program of China(122007AA061601)the National Natural Science Foundation of Chinathe National Basic Research Program of China(20607026,20877092& 20877005)
文摘As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS),triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples.Significant parameters that may affect extraction efficiencies were examined and optimized,including the types and amount of ionic liquids,volume of the diluent,heating temperature,cooling time,salt effect and pH value.Under the optimum conditions,linearity of the method was observed in the ranges of 0.0100-100 μgL-1 for TCS and M-TCS,and 0.00500-50.0 μgL-1 for TCC with correlation coefficients (r2) 】 0.9903.The limits of detection (LODs) ranged from 1.15 to 5.33 ngL-1.TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μgL-1,respectively.The spiked recoveries of the three target compounds in reclaimed water,irrigating water,waste water and domestic water samples were obtained in the ranges of 68.4%-71.9%,61.6%-87.8%,58.9%-74.9% and 64.9%-92.4%,respectively.Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS,TCC and M-TCS,this method is not only more environmentally friendly but also more sensitive.
基金financially supported by National Water Pollution Control and Management Technology Major Projects(No.2009ZX07210-009)Scientific and Technological Developing Project of Shandong Province(No. 2009GG20001021-9)+1 种基金Open Research Fund Program of Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta(No.2009KFJJ01)Basic Foundation of Shandong Academy of Sciences and Analysis and Test center of Shandong province
文摘A novel temperature controlled ionic liquid dispersive liquid phase microextracfion (TCIL-DLPME) coupled with rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-ESI-MS-MS) has been developed for the enrichment and determination of three hexabromocyclododecane diastereomers (HBCDs) in water samples. Green solvent ionic liquid (IL) was used as extraction solvent instead of toxic organic solvents. This technique also avoided the usage of dispersive solvent. Some important parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. All the limits of detection for the three diastereomers were 0.1 ng/ mL. The linear range was obtained in the range of 1-100 ng/mL for the total amount of three HBCD diastereomers. It was satisfactory to analyze real environmental water samples with the recoveries ranging from 77.2% to 99.3%. The main advantage of the method is toxic organic solvent-free.
文摘A simple and rapid dispersive liquid–liquid microextraction(DLLME)technique coupled with gas chromatography–ion trap mass spectrometry(GC–MS)was developed for the extraction and analysis of methamphetamine(MA),pethidine(PD),ketamine(KT)and tramadol(TD)from human urine.In this study,different parameters affecting the extraction process such as the type and volume of extraction solvent,type and volume of disperser solvent,extraction time and pH value and salt effect were studied and optimized.Under optimized conditions,the enrichment factor ranged from 185 to 226 and the average recovery ranged from 80.45%to 95.55%.The linear range was 10.0–1000.0 mg/L,the limit of detection and quantitation were in the range 0.43–1.96 mg/L and 1.44–6.53 mg/L,respectively.The relative standard deviations were in the range 1.98%–3.90%(n=7).The obtained results show that DLLME combined with GC–MS is a fast and simple method for the determination of MA,PD,KT and TD in human urine.
基金financially supported by the National Natural Science Foundation of China (No. 21377167)Program for New Century Excellent Talents in University (No. NCET-10-0813)
文摘A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine,simazine,and atrazine in water samples.1-Octyl-3-methylimidazolium hexafluorophosphate([C8MIM][PF6]) was selected as the extraction solvent.Several experimental parameters were optimized.Under the optimal conditions,the linear range for cyanazine was in the concentration range of 0.5–80 mg/L and the linear range for simazine and atrazine was in the range of1.0–100 mg/L.The limit of detection(LOD,S/N = 3) was in the ranges of 0.05–0.06 mg/L,and the intra day and inter day precision(RSDs,n = 6) was in the ranges of 3.2%–6.6% and 4.8%–8.9%,respectively.Four real water samples were analyzed with the developed method,and the experimental results showed that the spiked recoveries were satisfactory.All these exhibited that the developed method was a valuable tool for monitoring such pollutants.
基金supported by the National Natural Science Foundation of China(No.21207124)Research Project of Beijing Municipal Education Commission(No.KM201110005009)the Special Fund for Quality Inspection Administration Public Welfare Scientific Research Funding(No.2012104001)
文摘Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver nanoparticles(AgN Ps)from environmental water samples.Parameters that influenced the extraction efficiency such as IL concentration,pH and extraction time were optimized.Under the optimized conditions,the highest extraction efficiency for AgN Ps was above 90% with an enrichment factor of 〉90.The extracted AgN Ps in the IL phase were identified by transmission electron microscopy and ultraviolet–visible spectroscopy,and quantified by inductively coupled plasma mass spectrometry after microwave digestion,with a detection limit of 0.01 μg/L.The spiked recovery of AgN Ps was 84.4% with a relative standard deviation(RSD)of 3.8%(n = 6)at a spiked level of 5 μg/L,and 89.7% with a RSD of 2.2%(n = 6)at a spiked level of 300 μg/L,respectively.Commonly existed environmental ions had a very limited influence on the extraction efficiency.The developed method was successfully applied to the analysis of Ag NPs in river water,lake water,and the influent and effluent of a wastewater treatment plant,with recoveries in the range of 71.0%–90.9% at spiking levels of 0.11–4.7 μg/L.