As one of the UAIDs(unconventional alternative intersection designs),DLTs(displaced left-turn crossovers)have been presented to mitigate traffic congestion.Although,qualitatively and quantitatively isolated UAIDs outp...As one of the UAIDs(unconventional alternative intersection designs),DLTs(displaced left-turn crossovers)have been presented to mitigate traffic congestion.Although,qualitatively and quantitatively isolated UAIDs outperform their conventional counterparts,there is no simplified procedure to consider the DLTs coordination.Hence,this research investigates the coordination of consecutive DLTs under heterogeneous traffic conditions.To achieve the optimal coordination and provide an efficient coordination control,a bandwidth maximization progression approach was used.Seeking the optimal offset for each pair of consecutive intersections to guarantee the green bandwidth waves along the coordinated corridor,a mixed-integer linear program was adopted.The optimization problem was formulated and solved based on the standard branch-and-bound technique.As a real-world study case,data of three typical intersections located in an arterial corridor in Cairo,Egypt was used.PTV-VISSIM as a microsimulation platform was employed to simulate and evaluate the different signal timing plans.However,to represent the heterogeneous traffic characteristics as close as possible to the reality,different simulation parameters were tuned and validated carefully.The results emphasized the undoubted improvement of coordinated DLTs by different operational performance indices.The total travel time,average delay,the number of stops per vehicle were obviously improved.展开更多
Continuous flow intersections (CFIs), also known as displaced left turns (DLTs), are a type of alternative intersection designed to improve operations at locations with heavy left-turn movements by reallocating these ...Continuous flow intersections (CFIs), also known as displaced left turns (DLTs), are a type of alternative intersection designed to improve operations at locations with heavy left-turn movements by reallocating these vehicles to the left side of opposing traffic. Currently, simulation is commonly used to evaluate operational performance of CFIs. However, this approach requires significant on-site data collection and is highly dependent on the analyst’s ability to correctly model the intersection and driver behavior. Recently, connected vehicle (CV) trajectory data has become widely available and presents opportunities for the direct measurement of traffic signal performance measures. This study utilizes CV trajectory data to analyze the performance of a CFI located in West Valley City, UT. Over 4500 trajectories and 105,000 GPS points are analyzed from August 2021 weekday data. Trajectories are linear-referenced to generate Purdue Probe Diagrams (PPDs) and extended PPDs to estimate split failures (SF), arrivals on green (AOG), traditional Highway Capacity Manual (HCM) level of service (LOS), and the distribution of stops. The estimated operational performance showed effective progression during the PM peak period at all the critical internal storage areas with AOG levels at exit traffic signals between 83% and 100%. In contrast, all external approaches with longer queue storage areas had AOG values ranging from 2% to 81% during the same time period. The presented analytical techniques and summary graphics provide practitioners with tools to evaluate the performance of any CFI where CV trajectories are available without the need for on-site data collection.展开更多
The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. Th...The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. The relationship was investigated under two different conditions. The number of opposing left-turn conflicts was positively correlated with the number of left-turn vehicles while the ratio of left-turn vehicles to opposing vehicles was less than 1, and showed a positive correlation with the number of opposing-through vehicles when the ratio of left-turn vehicles to opposing vehi- cles was more than 1. In other words, the opposing left-turn risk was positively correlated with the number of the minor traffic participants, which had a negative effect on the whole traffic system op- eration.展开更多
Left-turning traffic without a protected left-turn signal is one of the major safety concerns at urban intersections. Though an average of only l0% - 15% of all approaching traffic turns left, significantly a large pr...Left-turning traffic without a protected left-turn signal is one of the major safety concerns at urban intersections. Though an average of only l0% - 15% of all approaching traffic turns left, significantly a large proportion of left-turn crashes occur involving 21% of all intersection fatal crashes. Where traditional safety countermeasures of signal timing-phasing and use of flashing yellow light have reportedly failed to significantly reduce the rate of crashes, an in-vehicle advance collision warning message can be helpful to reduce left-turn collisions at intersections. In this study, an in-vehicle audio warning application has been designed by providing two safety warning messages (Advance Warning Message and Safe Left-turn Maneuver Message) under the vehicle to vehicle (V2V) communication system, which is triggered based on the acceptable gaps of oncoming opposing vehicles for a safe left-turn. A driving simulator test has been conducted with 30 participants to investigate the impacts of warning messages on performance measures such as speed and acceleration profiles, collision records, brake reaction distance, and intersection clearance time. Statistical results showed that with the help of these messages, all participants were able to reduce speeds and accelerations and chose suitable gaps without potential conflicts. Moreover, the results of questionnaire analysis provide a positive acceptability especially for the Safe Left-turn Maneuver Message. Based on the performance measurements, this type of safety warning messages can be recommended for possible real-road tests for practical applications.展开更多
Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and t...Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。展开更多
文摘As one of the UAIDs(unconventional alternative intersection designs),DLTs(displaced left-turn crossovers)have been presented to mitigate traffic congestion.Although,qualitatively and quantitatively isolated UAIDs outperform their conventional counterparts,there is no simplified procedure to consider the DLTs coordination.Hence,this research investigates the coordination of consecutive DLTs under heterogeneous traffic conditions.To achieve the optimal coordination and provide an efficient coordination control,a bandwidth maximization progression approach was used.Seeking the optimal offset for each pair of consecutive intersections to guarantee the green bandwidth waves along the coordinated corridor,a mixed-integer linear program was adopted.The optimization problem was formulated and solved based on the standard branch-and-bound technique.As a real-world study case,data of three typical intersections located in an arterial corridor in Cairo,Egypt was used.PTV-VISSIM as a microsimulation platform was employed to simulate and evaluate the different signal timing plans.However,to represent the heterogeneous traffic characteristics as close as possible to the reality,different simulation parameters were tuned and validated carefully.The results emphasized the undoubted improvement of coordinated DLTs by different operational performance indices.The total travel time,average delay,the number of stops per vehicle were obviously improved.
文摘Continuous flow intersections (CFIs), also known as displaced left turns (DLTs), are a type of alternative intersection designed to improve operations at locations with heavy left-turn movements by reallocating these vehicles to the left side of opposing traffic. Currently, simulation is commonly used to evaluate operational performance of CFIs. However, this approach requires significant on-site data collection and is highly dependent on the analyst’s ability to correctly model the intersection and driver behavior. Recently, connected vehicle (CV) trajectory data has become widely available and presents opportunities for the direct measurement of traffic signal performance measures. This study utilizes CV trajectory data to analyze the performance of a CFI located in West Valley City, UT. Over 4500 trajectories and 105,000 GPS points are analyzed from August 2021 weekday data. Trajectories are linear-referenced to generate Purdue Probe Diagrams (PPDs) and extended PPDs to estimate split failures (SF), arrivals on green (AOG), traditional Highway Capacity Manual (HCM) level of service (LOS), and the distribution of stops. The estimated operational performance showed effective progression during the PM peak period at all the critical internal storage areas with AOG levels at exit traffic signals between 83% and 100%. In contrast, all external approaches with longer queue storage areas had AOG values ranging from 2% to 81% during the same time period. The presented analytical techniques and summary graphics provide practitioners with tools to evaluate the performance of any CFI where CV trajectories are available without the need for on-site data collection.
基金Supported by the Programme of Introducing Talents of Discipline to Universities (B12022)
文摘The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. The relationship was investigated under two different conditions. The number of opposing left-turn conflicts was positively correlated with the number of left-turn vehicles while the ratio of left-turn vehicles to opposing vehicles was less than 1, and showed a positive correlation with the number of opposing-through vehicles when the ratio of left-turn vehicles to opposing vehi- cles was more than 1. In other words, the opposing left-turn risk was positively correlated with the number of the minor traffic participants, which had a negative effect on the whole traffic system op- eration.
文摘Left-turning traffic without a protected left-turn signal is one of the major safety concerns at urban intersections. Though an average of only l0% - 15% of all approaching traffic turns left, significantly a large proportion of left-turn crashes occur involving 21% of all intersection fatal crashes. Where traditional safety countermeasures of signal timing-phasing and use of flashing yellow light have reportedly failed to significantly reduce the rate of crashes, an in-vehicle advance collision warning message can be helpful to reduce left-turn collisions at intersections. In this study, an in-vehicle audio warning application has been designed by providing two safety warning messages (Advance Warning Message and Safe Left-turn Maneuver Message) under the vehicle to vehicle (V2V) communication system, which is triggered based on the acceptable gaps of oncoming opposing vehicles for a safe left-turn. A driving simulator test has been conducted with 30 participants to investigate the impacts of warning messages on performance measures such as speed and acceleration profiles, collision records, brake reaction distance, and intersection clearance time. Statistical results showed that with the help of these messages, all participants were able to reduce speeds and accelerations and chose suitable gaps without potential conflicts. Moreover, the results of questionnaire analysis provide a positive acceptability especially for the Safe Left-turn Maneuver Message. Based on the performance measurements, this type of safety warning messages can be recommended for possible real-road tests for practical applications.
基金the National Natural Science Foundation of China under Grant No.71971140the Soft Science Research Project of Shanghai No.22692194500the Pujiang Program under Grant No.21PJC085.
文摘Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。