A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at h...A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.展开更多
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a...A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.展开更多
By accurately measuring the displacement between the roller surface and the optical fiber probe relative to a null position, we can test the roller wear. The whole testing method and system were introduced. Each part ...By accurately measuring the displacement between the roller surface and the optical fiber probe relative to a null position, we can test the roller wear. The whole testing method and system were introduced. Each part of the testing system was illustrated. And also a novel fiber-optic sensor with three probes in equal transverse space is adopted. Using this sensor, the effects of fluctuations in the light source, reflectivity changing of target surface and the intensity losses in the fiber lines are automatically compensated. This method offers such advantages as non-contact, no electromagnetic interference, simplicity, low cost, high sensitivity, good accuracy and stability.展开更多
A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with...A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with low noise ,low drift operational amplifiers,6-pole Butterworth filters and perfect digital signal processing circuits.展开更多
This paper introduces the application of a slant lens fiber in a reflective fiber optical displacement sensor, namely the receiving fiber use the slant lens fiber. Based on the characteristic formula expression of the...This paper introduces the application of a slant lens fiber in a reflective fiber optical displacement sensor, namely the receiving fiber use the slant lens fiber. Based on the characteristic formula expression of the intensity modulation of planar single fiber pair, a mathematic model of single fiber fair intensity modulation is established. After simulation experiment, the influence of fiber spacing, fiber core diameter and fiber numerical aperture on the modulation characteristics of the sensor is summarized.展开更多
Optical fibre sensor has the advantages of small size,light weight,anti⁃electromagnetic interference,and high measurement accuracy,which has important applications in research and industrial production.To design an op...Optical fibre sensor has the advantages of small size,light weight,anti⁃electromagnetic interference,and high measurement accuracy,which has important applications in research and industrial production.To design an optical fibre displacement sensor(OFBDS)with simple structure and high measurement accuracy,the unified model of the commonly used OFBDS structures was proposed and the feasibility of the intensity⁃modulation of multi⁃structural optical fibre bundles was analysed based on the arrangement characteristics of the fibre bundle end⁃face.The intensity⁃modulation characteristic of different fibre bundles was analysed,and the single coil coaxial fibre bundle was chosen as the fibre probe in this study.The sensor hardware system was designed.Lastly,the calibration experiment,temperature interference experiment,changes of measured plane surface area,and the dynamic experiment were conducted.Results showed that the sensor linear measurement range was about 3 mm,and the sensor system had excellent static and dynamic characteristics.展开更多
This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is hi...This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is higher than its natural frequency, it is difficult to detect low frequency vibrations below 1 Hz using a conventional a seismic-type displacement sensor. In order to provide an absolute displacement detection which is capable of lowering the natural frequency and enlarging the detectable amplitude without causing structural defects, the relative signals of displacement, velocity, and acceleration between a detected object and the auxiliary mass of the sensor are fed back into the sensor. In addition, phase lag compensation is inserted to adjust phase angles, which are of a frequency of 1 Hz. According to simulation results, a detection range from 0.1 Hz to 50 Hz is expected. It has been demonstrated that the developed sensor with a small size and light weight has a detection range of from 0.5 Hz to 50 Hz for absolute displacement and velocity. As an additional advantage, the measurement displacement amplitude has been expanded to about 20 dB. This sensor is available to use for the active control method. of flexible structures like high rise buildings using the LQ control展开更多
The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and...The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and destructive.In contrast,the point laser displacement sensor,employing the optical triangle method,emerges as a promising device for assessing parts with variable curvature and highly reflective surfaces.Despite its benefits,high-density sampling by an innate frequency introduces challenges such as data redundancy and a poor signal-to-noise ratio,potentially affecting the efficiency and precision of subsequent data processing.To address these challenges,adjustable frequency data sampling has been developed for this sensor,allowing adaptive sampling for corrugated plate digitization.The process begins with surface digitization to extract discrete points,which are transformed into intersection curves using the B-spline fitting technique.Subsequently,dominant points are identified,considering multigeometric constraints for curvature and arch height.Finally,the sampling signal is adjusted based on the distribution information of dominant points.Comparative results indicate that the proposed method effectively minimizes redundant sampling without compromising the accurate capture of essential geometric features.展开更多
Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quali...Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quality of the reflecting surface and it is hard to gethigh resolution. Considering the concentric-circle gratings, the displacement can only be gainedwith complicated calculating of the experiment data. Compared with the advantages and limitations ofthe methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. Thiskind of mark has an absolute zero-reference when used in pair, and the experimental result is simpleto dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position ofthe two marks can be detected by the maximum output of the sharp intensity peak. And each slope ofthe peak is of good linearity which can be used to achieve high resolution in positioning andalignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introducedin detail. The experiment results are agreed with the theoretical ones.展开更多
An on-machine measuring(OMM)system with a laser displacement sensor(LDS)is designed for measuring free-form surfaces of hypersonic aircraft’s radomes.To improve the measurement accuracy of the OMM system,a novel Iter...An on-machine measuring(OMM)system with a laser displacement sensor(LDS)is designed for measuring free-form surfaces of hypersonic aircraft’s radomes.To improve the measurement accuracy of the OMM system,a novel Iteratively Automatic machine learning Boosted hand-eye Calibration(IABC)method is proposed.Both the hand-eye relationship and LDS measurement errors can be calibrated in one calibration process without any hardware changes via IABC.Firstly,a new objective function is derived,containing analytical parameters of the handeye relationship and LDS errors.Then,a hybrid calibration model composed of two kernels is proposed to solve the objective function.One kernel is the analytical kernel designed for solving analytical parameters.Another kernel is the automatic machine learning(AutoML)kernel designed to model LDS errors.The two kernels are connected with stepwise iterations to find the best calibration results.Compared with traditional methods,hand-eye experiments show that IABC reduces the calibration RMSE by about 50%.Verification experiments show that IABC reduces the measurement deviations by about 25%-50%and RMSEs within 40%.Even when the training data are obviously less than the test data,IABC performs well.Experiments demonstrate that IABC is more accurate than traditional hand-eye methods.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
This paper presents a long-range displacement measurement method by using a single- multi-single mode (SMS) fiber structure, attached to a flexible plate between two permanent poles and the optical time domain refle...This paper presents a long-range displacement measurement method by using a single- multi-single mode (SMS) fiber structure, attached to a flexible plate between two permanent poles and the optical time domain reflectometer (OTDR)-based interrogator. The SMS fiber structure sensors are prepared with two different configurations, i.e. straight and sinusoidal configurations. It is demonstrated that the displacement sensor can perform a displacement measurement with a range from 0 mm to 150 mm with a resolution of 0.159 mm. The sinusoidal configuration provides a better sensitivity than the straight configuration. The proposed sensor offers a low cost, and it can be implemented for quasi-distributed displacement measurement which is suitable for civil structure monitoring.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back;...The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only ⊥-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 rim, and the sensor can discriminate the target's moving direction easily.展开更多
In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe...In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe head,the frame of a coordinate measuring machine(CMM),etc.As the output of the laser sensor directly obtained possesses the 1D length of the laser beam,it needs to determine the unit direction vector of the laser beam denoted as(l,m,n)by calibration so as to convert the 1D values into 3D coordinates of target points.Therefore,an extrinsic calibration method based on a standard sphere is proposed to accomplish this task in the paper.During the calibration procedure,the laser sensor moves along with the motion of the CMM and gathers the required data on the spherical surface.Then,both the output of the laser sensor and the grating readings of the CMM are substituted into the constraint equation of the spherical surface,in which an over-determined nonlinear equation group containing unknown parameters is established.For the purpose of solving the equation group,a method based on non-linear least squares optimization is put forward.Finally,the system after calibration is utilized to measure the diameter of a metallic sphere 10 times from different orientations to verify the calibration accuracy.In the experiment,the errors between the measured results and the true values are all smaller than 0.03 mm,which manifests the validity and practicality of the extrinsic calibration method presented in the paper.展开更多
Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is pr...Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is proposed.According to the relevant regulations of the coaxiality error evaluation standard and the structural characteristics of the compound gear shaft,we have designed and built a set of supporting software system as well as a hardware test platform.In this paper,the distance difference threshold and scale threshold methods are used to eliminate outlier data.The least squares circle is selected to calculate the center of the circle and the minimum containment cylinder axis method is used as the reference axis of the composite gear shaft.Compensated by the standard step shaft calibration,the coaxiality error of the composite gear shaft can be measured to be within 0.01 mm in less than two minutes.The range value of the multi-section measurement test is 0.065 mm.The average coaxiality error is∅0.476 mm.展开更多
Photoelectric displacement sensors rarely possess a perfectly linear transfer characteristic, but always have some degree of non-linearity over their range of operation. If the sensor output is nonlinear, it will prod...Photoelectric displacement sensors rarely possess a perfectly linear transfer characteristic, but always have some degree of non-linearity over their range of operation. If the sensor output is nonlinear, it will produce a whole assortment of problems. This paper presents a method to compensate the nonlinearity of the photoelectric displacement sensor based on the extreme learning machine (ELM) method which significantly reduces the amount of time needed to train a neural network with the output voltage of the optical displacement sensor and the measured input displacement to eliminate the nonlinear errors in the training process. The use of this proposed method was demonstrated through computer simulation with the experimental data of the sensor. The results revealed that the proposed method compensated the presence of nonlinearity in the sensor with very low training time, lowest mean squared error (MSE) value, and better linearity. This research work involved less computational complexity, and it behaved a good performance for nonlinearity compensation for the photoelectric displacement sensor and has a good application prospect.展开更多
In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based o...In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.展开更多
A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine me...A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine measuring applications and one kind of contact type measuring probes was designed for miniaturized or microfactory system. It ideally should be of small size and able to measure surface topography in nanometer scale. A commercial capacitive displacement sensor was proposed. It was a new concept in nano probe systems which can measure the displacement of shaft driven by the variation of surface topography. The nano probe mainly consisted of three parts: a capacitive displacement sensor, a porous type air slide and a contact probe part with various tip radiuses. The porous type air slide assured the shaft slided smoothly with controllable normal force in mN scale and had high positioning accuracy. The probe part which was directly in contact with target surface, can be applied to micro/nanoscale scratching as well as the measurement of sample topography by a simple tip change.展开更多
An interferometer based optical sensor for displacement measurement is reported. This method requires quite simple signal processing as well as least electronic components. Referring to this technique, two photodiodes...An interferometer based optical sensor for displacement measurement is reported. This method requires quite simple signal processing as well as least electronic components. Referring to this technique, two photodiodes spatially shifted by 90 degrees were used. The output of photodiodes was converted into rectangular signals which were extracted in LabVIEW using the data acquisition card without using an analog to digital converters (ADC). We have also processed the signals in C++ after acquiring via parallel port. A Michelson interferometer configuration was used to produce linear fringes for the detection of displacements. The displacement less than 100nm could be measured using this technique.展开更多
基金This project is supported by European Community Project, National NaturalScience Foundation of China (No.50437010) and Aviation Science Founda-tion of China (No.99C52072).
文摘A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.
基金Project(50925727) supported by the National Fund for Distinguish Young Scholars of ChinaProject(60876022) supported by the National Natural Science Foundation of China+1 种基金Project(2010FJ4141) supported by Hunan Provincial Science and Technology Foundation,ChinaProject supported by the Fund of the Key Construction Academic Subject (Optics) of Hunan Province,China
文摘A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.
文摘By accurately measuring the displacement between the roller surface and the optical fiber probe relative to a null position, we can test the roller wear. The whole testing method and system were introduced. Each part of the testing system was illustrated. And also a novel fiber-optic sensor with three probes in equal transverse space is adopted. Using this sensor, the effects of fluctuations in the light source, reflectivity changing of target surface and the intensity losses in the fiber lines are automatically compensated. This method offers such advantages as non-contact, no electromagnetic interference, simplicity, low cost, high sensitivity, good accuracy and stability.
文摘A low fineness fiber optic Fabry-Perot interferometric displacement sensor has been developed and tested.A 0.005 nm displacement resolution is obtained by using He-Ne laser with a high performance ,photodetectors with low noise ,low drift operational amplifiers,6-pole Butterworth filters and perfect digital signal processing circuits.
基金Youth Science and Technology Research Foundation of Shanxi Province(No.2015021104)Programs for Science and Technology Development of Shanxi Province(No.201703D121028-2)
文摘This paper introduces the application of a slant lens fiber in a reflective fiber optical displacement sensor, namely the receiving fiber use the slant lens fiber. Based on the characteristic formula expression of the intensity modulation of planar single fiber pair, a mathematic model of single fiber fair intensity modulation is established. After simulation experiment, the influence of fiber spacing, fiber core diameter and fiber numerical aperture on the modulation characteristics of the sensor is summarized.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51775260)the Qinglan Project of Jiangsu Province(2017)of China and the Funds of Nanjing Institute of Technology(Grant No.CKJA201801).
文摘Optical fibre sensor has the advantages of small size,light weight,anti⁃electromagnetic interference,and high measurement accuracy,which has important applications in research and industrial production.To design an optical fibre displacement sensor(OFBDS)with simple structure and high measurement accuracy,the unified model of the commonly used OFBDS structures was proposed and the feasibility of the intensity⁃modulation of multi⁃structural optical fibre bundles was analysed based on the arrangement characteristics of the fibre bundle end⁃face.The intensity⁃modulation characteristic of different fibre bundles was analysed,and the single coil coaxial fibre bundle was chosen as the fibre probe in this study.The sensor hardware system was designed.Lastly,the calibration experiment,temperature interference experiment,changes of measured plane surface area,and the dynamic experiment were conducted.Results showed that the sensor linear measurement range was about 3 mm,and the sensor system had excellent static and dynamic characteristics.
文摘This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is higher than its natural frequency, it is difficult to detect low frequency vibrations below 1 Hz using a conventional a seismic-type displacement sensor. In order to provide an absolute displacement detection which is capable of lowering the natural frequency and enlarging the detectable amplitude without causing structural defects, the relative signals of displacement, velocity, and acceleration between a detected object and the auxiliary mass of the sensor are fed back into the sensor. In addition, phase lag compensation is inserted to adjust phase angles, which are of a frequency of 1 Hz. According to simulation results, a detection range from 0.1 Hz to 50 Hz is expected. It has been demonstrated that the developed sensor with a small size and light weight has a detection range of from 0.5 Hz to 50 Hz for absolute displacement and velocity. As an additional advantage, the measurement displacement amplitude has been expanded to about 20 dB. This sensor is available to use for the active control method. of flexible structures like high rise buildings using the LQ control
基金supported by the National Natural Science Foundation of China(Grant Nos.52305535,52122512,and 52188102)the Natural Science Foundation of Hubei Province(Grant No.2021CFA075)。
文摘The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and destructive.In contrast,the point laser displacement sensor,employing the optical triangle method,emerges as a promising device for assessing parts with variable curvature and highly reflective surfaces.Despite its benefits,high-density sampling by an innate frequency introduces challenges such as data redundancy and a poor signal-to-noise ratio,potentially affecting the efficiency and precision of subsequent data processing.To address these challenges,adjustable frequency data sampling has been developed for this sensor,allowing adaptive sampling for corrugated plate digitization.The process begins with surface digitization to extract discrete points,which are transformed into intersection curves using the B-spline fitting technique.Subsequently,dominant points are identified,considering multigeometric constraints for curvature and arch height.Finally,the sampling signal is adjusted based on the distribution information of dominant points.Comparative results indicate that the proposed method effectively minimizes redundant sampling without compromising the accurate capture of essential geometric features.
基金This project is supported by National Natural Science Foundation of China(No.50335050, No.50275140)Specialized Research Foundation for Doctoral Program of Higher Education (SRFDP) of China(No. 20030358020).
文摘Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quality of the reflecting surface and it is hard to gethigh resolution. Considering the concentric-circle gratings, the displacement can only be gainedwith complicated calculating of the experiment data. Compared with the advantages and limitations ofthe methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. Thiskind of mark has an absolute zero-reference when used in pair, and the experimental result is simpleto dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position ofthe two marks can be detected by the maximum output of the sharp intensity peak. And each slope ofthe peak is of good linearity which can be used to achieve high resolution in positioning andalignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introducedin detail. The experiment results are agreed with the theoretical ones.
基金supported by the National Natural Science Foundation of China (Nos. 51875406 and 51805365)
文摘An on-machine measuring(OMM)system with a laser displacement sensor(LDS)is designed for measuring free-form surfaces of hypersonic aircraft’s radomes.To improve the measurement accuracy of the OMM system,a novel Iteratively Automatic machine learning Boosted hand-eye Calibration(IABC)method is proposed.Both the hand-eye relationship and LDS measurement errors can be calibrated in one calibration process without any hardware changes via IABC.Firstly,a new objective function is derived,containing analytical parameters of the handeye relationship and LDS errors.Then,a hybrid calibration model composed of two kernels is proposed to solve the objective function.One kernel is the analytical kernel designed for solving analytical parameters.Another kernel is the automatic machine learning(AutoML)kernel designed to model LDS errors.The two kernels are connected with stepwise iterations to find the best calibration results.Compared with traditional methods,hand-eye experiments show that IABC reduces the calibration RMSE by about 50%.Verification experiments show that IABC reduces the measurement deviations by about 25%-50%and RMSEs within 40%.Even when the training data are obviously less than the test data,IABC performs well.Experiments demonstrate that IABC is more accurate than traditional hand-eye methods.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.
文摘This paper presents a long-range displacement measurement method by using a single- multi-single mode (SMS) fiber structure, attached to a flexible plate between two permanent poles and the optical time domain reflectometer (OTDR)-based interrogator. The SMS fiber structure sensors are prepared with two different configurations, i.e. straight and sinusoidal configurations. It is demonstrated that the displacement sensor can perform a displacement measurement with a range from 0 mm to 150 mm with a resolution of 0.159 mm. The sinusoidal configuration provides a better sensitivity than the straight configuration. The proposed sensor offers a low cost, and it can be implemented for quasi-distributed displacement measurement which is suitable for civil structure monitoring.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60437030).
文摘The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only ⊥-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 rim, and the sensor can discriminate the target's moving direction easily.
基金supported by the National Science and Technology Major Project for ‘‘High-grade Numerical Control Machine Tools and Basic Manufacturing Equipment” of China (No. 2013ZX04001071)
文摘In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe head,the frame of a coordinate measuring machine(CMM),etc.As the output of the laser sensor directly obtained possesses the 1D length of the laser beam,it needs to determine the unit direction vector of the laser beam denoted as(l,m,n)by calibration so as to convert the 1D values into 3D coordinates of target points.Therefore,an extrinsic calibration method based on a standard sphere is proposed to accomplish this task in the paper.During the calibration procedure,the laser sensor moves along with the motion of the CMM and gathers the required data on the spherical surface.Then,both the output of the laser sensor and the grating readings of the CMM are substituted into the constraint equation of the spherical surface,in which an over-determined nonlinear equation group containing unknown parameters is established.For the purpose of solving the equation group,a method based on non-linear least squares optimization is put forward.Finally,the system after calibration is utilized to measure the diameter of a metallic sphere 10 times from different orientations to verify the calibration accuracy.In the experiment,the errors between the measured results and the true values are all smaller than 0.03 mm,which manifests the validity and practicality of the extrinsic calibration method presented in the paper.
基金supported by the National Natural Science Foundation of China(No.51975293)Aeronautical Science Foundation of China (No. 2019ZD052010)
文摘Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is proposed.According to the relevant regulations of the coaxiality error evaluation standard and the structural characteristics of the compound gear shaft,we have designed and built a set of supporting software system as well as a hardware test platform.In this paper,the distance difference threshold and scale threshold methods are used to eliminate outlier data.The least squares circle is selected to calculate the center of the circle and the minimum containment cylinder axis method is used as the reference axis of the composite gear shaft.Compensated by the standard step shaft calibration,the coaxiality error of the composite gear shaft can be measured to be within 0.01 mm in less than two minutes.The range value of the multi-section measurement test is 0.065 mm.The average coaxiality error is∅0.476 mm.
文摘Photoelectric displacement sensors rarely possess a perfectly linear transfer characteristic, but always have some degree of non-linearity over their range of operation. If the sensor output is nonlinear, it will produce a whole assortment of problems. This paper presents a method to compensate the nonlinearity of the photoelectric displacement sensor based on the extreme learning machine (ELM) method which significantly reduces the amount of time needed to train a neural network with the output voltage of the optical displacement sensor and the measured input displacement to eliminate the nonlinear errors in the training process. The use of this proposed method was demonstrated through computer simulation with the experimental data of the sensor. The results revealed that the proposed method compensated the presence of nonlinearity in the sensor with very low training time, lowest mean squared error (MSE) value, and better linearity. This research work involved less computational complexity, and it behaved a good performance for nonlinearity compensation for the photoelectric displacement sensor and has a good application prospect.
基金National Science and Technology Major Project of China(No.2016ZX04003001)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCZDJC39700)
文摘In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.
基金Project supported by National Core Research Center (NCRC) and Chosun University, Korea
文摘A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine measuring applications and one kind of contact type measuring probes was designed for miniaturized or microfactory system. It ideally should be of small size and able to measure surface topography in nanometer scale. A commercial capacitive displacement sensor was proposed. It was a new concept in nano probe systems which can measure the displacement of shaft driven by the variation of surface topography. The nano probe mainly consisted of three parts: a capacitive displacement sensor, a porous type air slide and a contact probe part with various tip radiuses. The porous type air slide assured the shaft slided smoothly with controllable normal force in mN scale and had high positioning accuracy. The probe part which was directly in contact with target surface, can be applied to micro/nanoscale scratching as well as the measurement of sample topography by a simple tip change.
文摘An interferometer based optical sensor for displacement measurement is reported. This method requires quite simple signal processing as well as least electronic components. Referring to this technique, two photodiodes spatially shifted by 90 degrees were used. The output of photodiodes was converted into rectangular signals which were extracted in LabVIEW using the data acquisition card without using an analog to digital converters (ADC). We have also processed the signals in C++ after acquiring via parallel port. A Michelson interferometer configuration was used to produce linear fringes for the detection of displacements. The displacement less than 100nm could be measured using this technique.