期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Displacement characteristics of CO_(2)flooding in extra-high water-cut reservoirs
1
作者 Rui Wang Yaxiong Zhang +3 位作者 Chengyuan Lyu Zengmin Lun Maolei Cui Dongjiang Lang 《Energy Geoscience》 EI 2024年第1期212-218,共7页
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje... Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions. 展开更多
关键词 displacement characteristics CO_(2)flooding Water shield phenomenon Oil-water partition coefficient Response time High water-cut
下载PDF
Oxidization characteristics and thermal miscible flooding of high pressure air injection in light oil reservoirs 被引量:3
2
作者 XI Changfeng WANG Bojun +11 位作者 ZHAO Fang LIU Tong QI Zongyao ZHANG Xialin TANG Junshi JIANG Youwei GUAN Wenlong WANG Hongzhuang HE Dongbo SONG Xinmin HUA Daode ZHANG Xiaokun 《Petroleum Exploration and Development》 CSCD 2022年第4期874-885,共12页
Physical modeling,numerical simulation and field case analysis were carried out to find out the subsurface thermal oxidation state,thermal oxidation front characteristics and production dynamic characteristics of high... Physical modeling,numerical simulation and field case analysis were carried out to find out the subsurface thermal oxidation state,thermal oxidation front characteristics and production dynamic characteristics of high pressure air injection thermal oxidation miscible flooding technology.The lighter the composition and the lower the viscosity of the crude oil,the lower the fuel consumption and the combustion temperature are.The thermal oxidation front of light oil and volatile oil can advance stably,and a medium-temperature thermal oxidation stable displacement state can be formed in the light oil reservoir under high pressure conditions.With strong thermal gasification and distillation,light oil and volatile oil are likely to form a single phase zone of gasification and distillation with thermal flue gas at the high-temperature and high-pressure heat front,finally,an air-injection thermal miscible front.In light oil reservoirs,the development process of high-pressure air-injection thermal miscible flooding can be divided into three stages:boosting pressure stage,low gas-oil ratio and high-efficiency stable production stage and high gas-oil ratio production stage.Approximately 70%of crude oil is produced during the boosting pressure stage and low gas-oil ratio high-efficiency and stable production stage. 展开更多
关键词 light oil reservoir air flooding displacement characteristics high-pressure oxidation front thermal miscible flooding fire flooding
下载PDF
A way of estimating the characteristic slip displacement
3
作者 Jeen-Hwa Wang 《Earthquake Science》 CSCD 2016年第1期35-43,共9页
During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, A... During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, AE = Es + Eg + El. Friction, which is represented by a velocity- and state-de- pendent friction law by some researchers, controls the three parts. One of the main parameters of the law is the char- acteristic slip displacement, De. It is significant and nec- essary to evaluate the reliable value of Dc from observed and inverted seismic data. Since Dc controls the radiation efficiency, ηR = Es/(Es + Eg), the value of qR is a good constraint of estimating Dc. Integrating observed data and inverted results of source parameters from recorded seis- mograms, the values of Es and Eg of an earthquake can be measured, thus leading to the value of ηR. The constraint used to estimate the reliable value of Dc will be described in this work. An example of estimates of Dc based on the observed and inverted values of source parameters of the September 20, 1999 Ms 7.6 Chi-Chi (Ji-Ji), Taiwan region, earthquake will be presented. 展开更多
关键词 Characteristic slip displacement Seismicradiation energy Fracture energy Radiation efficiency
下载PDF
A numerical study of comparison of two one-state-variable,rate-and state-dependent friction evolution laws 被引量:2
4
作者 Jeen-Hwa Wang 《Earthquake Science》 CSCD 2009年第2期197-204,共8页
The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical... The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., A (the normalized characteristic slip distance) and β-α (the difference in two normalized parameters of friction laws), control the solutions. From given values of △, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when △〉(β-α), yet not when △ 〈(β-α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law. 展开更多
关键词 one-state-variable rate- and state-dependent friction law direct effect evolution effect characteristic slip displacement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部