We propose a high temperature-sensitive long period fiber grating(LPFG) sensor fabricated by using the femtosecond laser transversal-scanning method. The femtosecond pulses scan over the whole fiber core and some pa...We propose a high temperature-sensitive long period fiber grating(LPFG) sensor fabricated by using the femtosecond laser transversal-scanning method. The femtosecond pulses scan over the whole fiber core and some part of the cladding region; the modified regions are more extended. It is found that the LPFG-I fabricated by the transversal-scanning method shows higher temperature sensitivity and better temperature uniformity than that of LPFG-II written by the femtosecond laser point-by-point method. The LPFG-I with a temperature sensitivity of 75.96 pm/°C in the range of 25°C–400°C is measured. Moreover, in the range from 400°C to 800°C, a higher temperature sensitivity of 148.64 pm/°C and good linearity of 0.99 are achieved, while the temperature sensitivity of LPFG-II is only 95.55 pm/°C. LPFG-I exhibits better temperature characteristics, which, to the best of our knowledge, has the highest sensitivity in silica fiber temperature sensors.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.91323301,51505505,51475482,and 51475481)the Natural Science Foundation of Hunan Province(No.2016JJ3147)+2 种基金the China Postdoctoral Science Foundation(Nos.2015M572264 and 2016T90757)the Self-selected Topic Fund of State Key Laboratory of High Performance and Complex Manufacturing(No.ZZYJKT2015-08)the Fundamental Research Funds for the Central Universities of Central South University
文摘We propose a high temperature-sensitive long period fiber grating(LPFG) sensor fabricated by using the femtosecond laser transversal-scanning method. The femtosecond pulses scan over the whole fiber core and some part of the cladding region; the modified regions are more extended. It is found that the LPFG-I fabricated by the transversal-scanning method shows higher temperature sensitivity and better temperature uniformity than that of LPFG-II written by the femtosecond laser point-by-point method. The LPFG-I with a temperature sensitivity of 75.96 pm/°C in the range of 25°C–400°C is measured. Moreover, in the range from 400°C to 800°C, a higher temperature sensitivity of 148.64 pm/°C and good linearity of 0.99 are achieved, while the temperature sensitivity of LPFG-II is only 95.55 pm/°C. LPFG-I exhibits better temperature characteristics, which, to the best of our knowledge, has the highest sensitivity in silica fiber temperature sensors.