Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semicond...Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.展开更多
The extraction conditions of aluminum by the disproportionation process of A1C1 in vacuum were investigated using alumina and graphite as raw materials, including reaction temperature, pre-reaction and condenser struc...The extraction conditions of aluminum by the disproportionation process of A1C1 in vacuum were investigated using alumina and graphite as raw materials, including reaction temperature, pre-reaction and condenser structure. The results show that the extent of the reaction between alumina and carbon increases with increasing reaction temperature at 1643-1843 K; however, the extraction rate of aluminum increases firstly, and reaches the highest at 1743 K, and then decreases with rise in reaction temperature. The pre-reaction of alumina and carbon increases the extraction rate of aluminum. The impurities C, AlaC3 and A1203 in the aluminum product are reduced with reducing the contact surface of the aluminum with CO and with decreasing the condensation temperature, depending on the structure of the condenser.展开更多
The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for t...The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for the reactions to form these impurities, the disproportionation of CO and the reactions of metallic aluminum with CO, decrease with decreasing pressure. The lg pCO-1/T diagram of metallic aluminum-CO system agrees with the experimental results, indicating that the reaction rate is very high and this system in vacuum is approximately in equilibrium; therefore, the equilibrium diagram can be used to predict the possible reactions in this system in vacuum.展开更多
The Annular Crossed Cable-Truss Structure(ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting di...The Annular Crossed Cable-Truss Structure(ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting disproportionate collapse. However, its disproportionate collapse resistance hasn't yet been analyzed in depth. In this study, numerical and experimental research was carried out to investigate the performance of ACCTS under cable rupture. The numerical analysis was done for ten cable-rupture plans using LS-DYNA(explicit method) and the experimental test on an ACCTS with a diameter of 17.15 m was performed for three cable-rupture plans. It is concluded that, while deflections increase with the number of removed cables, an ACCTS does not undergo a disproportionate collapse and it provides a promising structural concept for tensile spatial structures.展开更多
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate)....Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.展开更多
The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. Th...The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. The results demonstrate that AlCl3(g) reacts with Al2O(g) or Al(g) generated from the carbothermal reduction of alumina to form AlCl(g), and the AlCl(g) disproportionates to aluminum and AlCl3(g) at a lower temperature and the reaction rate of AlCl(g) reaches 90% at 980 K and 100 Pa. The aluminum can absorb CO to catalyze its disproportionation to C and CO2, and react backward with CO to form Al4C3, Al2O3, C and CO2, resulting in the aluminum product containing C, Al4C3 and Al2O3. The impurities in the aluminum product decrease as the AlCl(g) disproportionation temperature decreases. AlCl3 condenses at a temperature approximated to the room temperature.展开更多
A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourl...A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.展开更多
The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxide...The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.展开更多
The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction me...The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction mechanism of AlCl disproportionation reaction on the aluminum (100) surfaces have been taken into account. The structures of reactants and products have been optimized, transition states have been confirmed and activation energies have been calculated. The adsorption energy of reactants and desorption energy of products have been determined. All of these have been employed to confirm the reaction mechanism and the rate determining step ofAlCl disproportionation reaction on the aluminum (100) surfaces.展开更多
A new ligand, 2-(2-hydroxyphenyl)-5,6-dichlorobenzimidazole, H2pbmCl2(1), and a novel MnIII complex, [MnIII(HpbmCl2)(pbmCl2)(DMF)2](2),(DMF = N,N-dimethylformamide), have been synthesized and characteriz...A new ligand, 2-(2-hydroxyphenyl)-5,6-dichlorobenzimidazole, H2pbmCl2(1), and a novel MnIII complex, [MnIII(HpbmCl2)(pbmCl2)(DMF)2](2),(DMF = N,N-dimethylformamide), have been synthesized and characterized. The crystal of compound 1(C13H8Cl2N2O, Mr = 279.12) belongs to the monoclinic system, space group P21 with a = 3.770(5), b = 25.20(3), c = 5.865(7) A, = 92.727(17)o, V = 556.6(12) A3, Z = 2, Dc = 1.665 g/cm^3, S = 1.137, μ= 0.568 mm^-1, F(000) = 284, the final R = 0.0876 and wR = 0.2334 for 1848 independent reflections. The molecule is planar due to the presence of a strong intramolecular hydrogen bond between O–H group of phenol and N atom of imidazole. H2pbmCl2(1) molecules are arranged into a one-dimensional linear chain through intermolecular hydrogen bonds(N–H…O and C–H…Cl). The crystal of complex 2(C32H27Cl4MnN6O4, Mr = 756.34) belongs to the monoclinic system, space group P21/c with a = 19.043(10), b = 10.808(5), c = 18.704(11)A, β= 115.540(6)°, V = 3473(3) A3, Z = 4, Dc = 1.446 g/cm^3, S = 1.3, μ = 0.733 mm-1, F(000) = 1544, the final R = 0.1219 and wR = 0.2681 for 7811 independent reflections. The Mn ion adopts a distorted octahedral geometry coordinated by two deprotonated H2pbmCl2 ligands and two DMF molecules. The [MnIII(HpbmCl2)(pbmCl2)(DMF)2] molecules are arranged into a three-dimensional structure through hydrogen bonds(N–H…N, C–H…N and C–H…Cl) and weak π···πinteractions. The activity measurements suggest that complex 2 is able to serve as a catalyst for H2O2 disproportionation reaction to form O2 in neutral water solution.展开更多
The selective synthesis of p-diethylbenzene (p-DEB) by disproportionation of ethylbenzene (EB) in the presence of aromatics like m- and p- xylene isomers has been studied over a pore size regulated HZSM-5 catalyst...The selective synthesis of p-diethylbenzene (p-DEB) by disproportionation of ethylbenzene (EB) in the presence of aromatics like m- and p- xylene isomers has been studied over a pore size regulated HZSM-5 catalyst. The industrial feed having different compositions of ethylbenzene and xylene isomers was used for the experimentation. Hence, they were expected to hinder the movement of reactant molecules both on the external surface and within the zeolite channels. It was observed that irrespective of the different feed compositions the concentration of the xylene isomers was intact in the product. There is no other byproducts formation like para-ethylmethyl benzene. The effects of varying the concentration of aromatic compounds in the feed on ethylbenzene conversion and product distribution over the parent and modified H-ZSM-5 catalyst have been discussed. Ethylbenzene disproportionation reaction follows the pseudo first order reaction with an activation energy of 8.6 kcal/mol.展开更多
Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a hi...Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a highly active metal-free catalyst is a great challenge.Herein,a series of ionic liquids-SBA-15 hybrid catalysts with different functional groups have been developed for the synthesis of DPC under solventfree condition,which are effective and clean instead of the metal-containing catalysts.It is found that in the presence of[SBA-15-IL-OH]Br catalyst,methyl phenyl carbonate(MPC)conversion of 80.5%along with 99.6%DPC selectivity is achieved,the TOF value is thrice higher than the best value reported by using transition metal-based catalysts.Moreover,the catalyst displays remarkable stability and recyclability.This work provides a new idea to design and prepare eco-friendly catalysts in a broad range of applications for the green synthesis of carbonates.展开更多
A new method of synthesizing single-component molecular conductor [Ni(dmit)2] by the reaction 2(Me4N)[Ni(dmit)2]2 [Ni(dmit)2] + (Me4N)[Ni(dmit)2] is reported. [Ni(dmit)2] exhibits a semiconductive behavior above 167...A new method of synthesizing single-component molecular conductor [Ni(dmit)2] by the reaction 2(Me4N)[Ni(dmit)2]2 [Ni(dmit)2] + (Me4N)[Ni(dmit)2] is reported. [Ni(dmit)2] exhibits a semiconductive behavior above 167 K, while from 167 K down to the measuring limit of 60 K, it exhibits metallic conductivity.展开更多
ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The sa...ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The samples were characterized by XRD, SEM, Py-IR and BET surface area measurements in order to understand the template eiTects and the differences between the ZSM-5 santples. The synthesis of ZSM-5 with organic templates was relatively easier than those with inorganic templates and withnut template. SEM results revealed that ZSM-5 synthesized with different templates had different morphologies in similar particle size. Toluene disproportiortation reaction was carried out over the catalyst samples to evaluate the catalytic properties. The results have shown that large crystals which have a correspondingly small external surface showed a high para-xylene selectivity, and the amount of C9^+ and C5^+ was much less than that obtained from zeolite with small crystals.展开更多
Development of active iron based water oxidation for designing an ideal artificial photosynthesis devices operating under benign neutral pH is highly demanded. We investigated the electrocatalytic activity of Ruddlesd...Development of active iron based water oxidation for designing an ideal artificial photosynthesis devices operating under benign neutral pH is highly demanded. We investigated the electrocatalytic activity of Ruddlesden-Pop-per-type strontium ferrite (Sr3Fe2O7) toward the oxygen evolution reaction (OER). Owing to the temperature-dependent efficiency of the charge disproportionation of Fe4+, the OER activity of Sr3Fe2O7 varied with the temperature, and the onset potential for the OER at a neutral pH underwent a negative shift of approximately 200 mV by increasing the temperature for the stabilization of Fe4+. When metal substitution was made to Sr3Fe2O7 for stabilizing Fe4+ at room temperature, the temperature dependence of the OER activity disappeared and the OER was driven at a small overpotential without increasing the temperature, indicating that the stabilization of Fe4+ is substantially important for achieving high OER activity.展开更多
A carbon-supported Ru catalyst, Ru/BP2000, is able to simultaneously convert cellobiose into sorbitol and gluconic acid. This reaction occurs as the result of hydrolytic disproportionation in water at 393 K under an A...A carbon-supported Ru catalyst, Ru/BP2000, is able to simultaneously convert cellobiose into sorbitol and gluconic acid. This reaction occurs as the result of hydrolytic disproportionation in water at 393 K under an Ar atmosphere, without bases or sacrificial reagents. In-situ XANES measurements suggest that the active Ru species involved is composed of partially oxidized Ru metal.展开更多
Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three or...Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three organic electrolytes.These processes are critical for the performance of Li-air batteries.Apart from studying the structure of the solvation shells in detail,AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO_(2)formation from Li^(+)and O_(2)−and the subsequent disproportionation of 2LiO_(2)into Li_(2)O_(2)+O_(2).By comparing the results of the simulations to gas phase calculations,the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions.展开更多
To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprisman...To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprismanes (PNNPs): C6H6-.(NO2). (n=1-6) Heats of formation (HOFs), strain energies (SE), and disproportionation energy (DE) were obtained using B3LYP/6-311+G(2df, 2p)//B3LYP/6-31G* method by designing different isodesmic reactions, respectively. Detonation properties of PNNPs were obtained by the well-known KAMLET-JACOBS equations, using the predicted densities (p) obtained by Monte Carlo method and HOFs. It is found that they increase as the number of nitro groups n varies from 1 to 6, and PNNPs with n〉4 have excellent detonation properties The relative stability and the pyrolysis mechanism of PNNPs were evaluated by the calculated bond dissociation energy (BDE). The comparison of BDE suggests that rupturing the C--C bond is the trigger for thermolysis of PNNPs. The computed BDE for cleavage of C--C bond (88.5 kJ/mol) further demonstrates that only the hexa-nitrotriprismane can be considered to be the target of HEDMs.展开更多
The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ing...The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting(SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders,acquiring degrees of alignment(DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy.展开更多
BACKGROUND Congenital fiber-type disproportion(CFTD)is a form of congenital myopathy.CFTD is rare,especially when presenting in patients with critical illnesses.Here,we report a case of CFTD presenting with type II re...BACKGROUND Congenital fiber-type disproportion(CFTD)is a form of congenital myopathy.CFTD is rare,especially when presenting in patients with critical illnesses.Here,we report a case of CFTD presenting with type II respiratory failure after delivery and provide a review of the literature on CFTD.CASE SUMMARY A 30-year-old woman was admitted to the obstetrics department of our hospital with premature rupture of the fetal membrane and with 7 h of regular contractions.After delivery,the patient experienced a refractory type II respiratory failure.Physical examination along with diagnostic procedures such as electromyography and biopsy confirmed CFTD.Use of invasive ventilator followed by intermittent use of noninvasive ventilator attenuated her symptoms.The patient recovered after ventilator-assisted respiration and was weaned off the noninvasive ventilator on the seventh day postpartum.CONCLUSION Congenital myopathy should be considered a differential diagnosis for type II respiratory failures that cannot be attributed to other diseases.展开更多
基金financially supported by the National Key Research and Development Program of China (No.2021YFA0718900)the National Natural Science Foundation of China (No.62074014)the Xiaomi Scholar project。
文摘Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.
基金Project(51264023)supported by the National Natural Science Foundation of ChinaProject(KKSY201207016)supported by Yunnan Provincial Science and Technology Department,China
文摘The extraction conditions of aluminum by the disproportionation process of A1C1 in vacuum were investigated using alumina and graphite as raw materials, including reaction temperature, pre-reaction and condenser structure. The results show that the extent of the reaction between alumina and carbon increases with increasing reaction temperature at 1643-1843 K; however, the extraction rate of aluminum increases firstly, and reaches the highest at 1743 K, and then decreases with rise in reaction temperature. The pre-reaction of alumina and carbon increases the extraction rate of aluminum. The impurities C, AlaC3 and A1203 in the aluminum product are reduced with reducing the contact surface of the aluminum with CO and with decreasing the condensation temperature, depending on the structure of the condenser.
基金Project(51364020)supported by the National Natural Science Foundation of China
文摘The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for the reactions to form these impurities, the disproportionation of CO and the reactions of metallic aluminum with CO, decrease with decreasing pressure. The lg pCO-1/T diagram of metallic aluminum-CO system agrees with the experimental results, indicating that the reaction rate is very high and this system in vacuum is approximately in equilibrium; therefore, the equilibrium diagram can be used to predict the possible reactions in this system in vacuum.
基金National Science Foundation of China under Grant Nos.51378031 and 51578019Natural Science Foundation of Beijing under Grant No.8152006Project of Key Laboratory of Urban Security and Disaster Engineering of MOE under Grant No.USDE201401
文摘The Annular Crossed Cable-Truss Structure(ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting disproportionate collapse. However, its disproportionate collapse resistance hasn't yet been analyzed in depth. In this study, numerical and experimental research was carried out to investigate the performance of ACCTS under cable rupture. The numerical analysis was done for ten cable-rupture plans using LS-DYNA(explicit method) and the experimental test on an ACCTS with a diameter of 17.15 m was performed for three cable-rupture plans. It is concluded that, while deflections increase with the number of removed cables, an ACCTS does not undergo a disproportionate collapse and it provides a promising structural concept for tensile spatial structures.
基金Supported by the Key Natural Science Foundation for Universities of Jiangsu Province(06KJA53012) the National Natural Science Foundation of China(20776069 20976084)
文摘Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan Province
文摘The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. The results demonstrate that AlCl3(g) reacts with Al2O(g) or Al(g) generated from the carbothermal reduction of alumina to form AlCl(g), and the AlCl(g) disproportionates to aluminum and AlCl3(g) at a lower temperature and the reaction rate of AlCl(g) reaches 90% at 980 K and 100 Pa. The aluminum can absorb CO to catalyze its disproportionation to C and CO2, and react backward with CO to form Al4C3, Al2O3, C and CO2, resulting in the aluminum product containing C, Al4C3 and Al2O3. The impurities in the aluminum product decrease as the AlCl(g) disproportionation temperature decreases. AlCl3 condenses at a temperature approximated to the room temperature.
基金Supported by the National'Creative Research Groups Science Foundation of China (No.60421002) and priority supported financially by "the New Century 151 Talent Project" of Zhejiang Province.
文摘A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.
基金supported by Cooperated Project of Academy and College Yunnan province(2003CBALA02P023)
文摘The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(No.u0837604) the Funds for Applied Basic Researches of Yunnan Province(No.2010CD022)
文摘The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction mechanism of AlCl disproportionation reaction on the aluminum (100) surfaces have been taken into account. The structures of reactants and products have been optimized, transition states have been confirmed and activation energies have been calculated. The adsorption energy of reactants and desorption energy of products have been determined. All of these have been employed to confirm the reaction mechanism and the rate determining step ofAlCl disproportionation reaction on the aluminum (100) surfaces.
基金supported by the National Natural Science Foundation of China(No.20973186 and 31070216)
文摘A new ligand, 2-(2-hydroxyphenyl)-5,6-dichlorobenzimidazole, H2pbmCl2(1), and a novel MnIII complex, [MnIII(HpbmCl2)(pbmCl2)(DMF)2](2),(DMF = N,N-dimethylformamide), have been synthesized and characterized. The crystal of compound 1(C13H8Cl2N2O, Mr = 279.12) belongs to the monoclinic system, space group P21 with a = 3.770(5), b = 25.20(3), c = 5.865(7) A, = 92.727(17)o, V = 556.6(12) A3, Z = 2, Dc = 1.665 g/cm^3, S = 1.137, μ= 0.568 mm^-1, F(000) = 284, the final R = 0.0876 and wR = 0.2334 for 1848 independent reflections. The molecule is planar due to the presence of a strong intramolecular hydrogen bond between O–H group of phenol and N atom of imidazole. H2pbmCl2(1) molecules are arranged into a one-dimensional linear chain through intermolecular hydrogen bonds(N–H…O and C–H…Cl). The crystal of complex 2(C32H27Cl4MnN6O4, Mr = 756.34) belongs to the monoclinic system, space group P21/c with a = 19.043(10), b = 10.808(5), c = 18.704(11)A, β= 115.540(6)°, V = 3473(3) A3, Z = 4, Dc = 1.446 g/cm^3, S = 1.3, μ = 0.733 mm-1, F(000) = 1544, the final R = 0.1219 and wR = 0.2681 for 7811 independent reflections. The Mn ion adopts a distorted octahedral geometry coordinated by two deprotonated H2pbmCl2 ligands and two DMF molecules. The [MnIII(HpbmCl2)(pbmCl2)(DMF)2] molecules are arranged into a three-dimensional structure through hydrogen bonds(N–H…N, C–H…N and C–H…Cl) and weak π···πinteractions. The activity measurements suggest that complex 2 is able to serve as a catalyst for H2O2 disproportionation reaction to form O2 in neutral water solution.
文摘The selective synthesis of p-diethylbenzene (p-DEB) by disproportionation of ethylbenzene (EB) in the presence of aromatics like m- and p- xylene isomers has been studied over a pore size regulated HZSM-5 catalyst. The industrial feed having different compositions of ethylbenzene and xylene isomers was used for the experimentation. Hence, they were expected to hinder the movement of reactant molecules both on the external surface and within the zeolite channels. It was observed that irrespective of the different feed compositions the concentration of the xylene isomers was intact in the product. There is no other byproducts formation like para-ethylmethyl benzene. The effects of varying the concentration of aromatic compounds in the feed on ethylbenzene conversion and product distribution over the parent and modified H-ZSM-5 catalyst have been discussed. Ethylbenzene disproportionation reaction follows the pseudo first order reaction with an activation energy of 8.6 kcal/mol.
基金support from the National Natural Science Foundation of China(No.21808048 and U1704251)Training Plan for University's Young Backbone Teachers of Henan Province(2021GGJS121)+5 种基金Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT014)Postgraduate Education Reform and Quality Improvement Project of Henan Province(YJS2022KC22)Project funded by China Postdoctoral Science Foundation(No.2018M632782)Project funded by Postdoctoral Research Grant in Henan Province(No.001802030)Key Project of Science and Technology Program of Henan Province(No.222102230109,212102310330 and 182102210050)the Science Research Start-up Fund of Henan Institute of Science and Technology(No.2015031).
文摘Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a highly active metal-free catalyst is a great challenge.Herein,a series of ionic liquids-SBA-15 hybrid catalysts with different functional groups have been developed for the synthesis of DPC under solventfree condition,which are effective and clean instead of the metal-containing catalysts.It is found that in the presence of[SBA-15-IL-OH]Br catalyst,methyl phenyl carbonate(MPC)conversion of 80.5%along with 99.6%DPC selectivity is achieved,the TOF value is thrice higher than the best value reported by using transition metal-based catalysts.Moreover,the catalyst displays remarkable stability and recyclability.This work provides a new idea to design and prepare eco-friendly catalysts in a broad range of applications for the green synthesis of carbonates.
基金supported by the National Natural Science Foundation of China(No.20172034)Foundation for Univemity Key Teacher by Ministry of Educationthe grant for the State Key Program of China.
文摘A new method of synthesizing single-component molecular conductor [Ni(dmit)2] by the reaction 2(Me4N)[Ni(dmit)2]2 [Ni(dmit)2] + (Me4N)[Ni(dmit)2] is reported. [Ni(dmit)2] exhibits a semiconductive behavior above 167 K, while from 167 K down to the measuring limit of 60 K, it exhibits metallic conductivity.
文摘ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The samples were characterized by XRD, SEM, Py-IR and BET surface area measurements in order to understand the template eiTects and the differences between the ZSM-5 santples. The synthesis of ZSM-5 with organic templates was relatively easier than those with inorganic templates and withnut template. SEM results revealed that ZSM-5 synthesized with different templates had different morphologies in similar particle size. Toluene disproportiortation reaction was carried out over the catalyst samples to evaluate the catalytic properties. The results have shown that large crystals which have a correspondingly small external surface showed a high para-xylene selectivity, and the amount of C9^+ and C5^+ was much less than that obtained from zeolite with small crystals.
文摘Development of active iron based water oxidation for designing an ideal artificial photosynthesis devices operating under benign neutral pH is highly demanded. We investigated the electrocatalytic activity of Ruddlesden-Pop-per-type strontium ferrite (Sr3Fe2O7) toward the oxygen evolution reaction (OER). Owing to the temperature-dependent efficiency of the charge disproportionation of Fe4+, the OER activity of Sr3Fe2O7 varied with the temperature, and the onset potential for the OER at a neutral pH underwent a negative shift of approximately 200 mV by increasing the temperature for the stabilization of Fe4+. When metal substitution was made to Sr3Fe2O7 for stabilizing Fe4+ at room temperature, the temperature dependence of the OER activity disappeared and the OER was driven at a small overpotential without increasing the temperature, indicating that the stabilization of Fe4+ is substantially important for achieving high OER activity.
基金supported by a Grant-in-Aid for Scientific Research (KAKENHI, 20226016)a JSPS Fellowship (KAKENHI, 11J03322) from the Japan Society for the Promotion of Science (JSPS) which supported the work of T K, who is a JSPS Research Fellow (DC2)
文摘A carbon-supported Ru catalyst, Ru/BP2000, is able to simultaneously convert cellobiose into sorbitol and gluconic acid. This reaction occurs as the result of hydrolytic disproportionation in water at 393 K under an Ar atmosphere, without bases or sacrificial reagents. In-situ XANES measurements suggest that the active Ru species involved is composed of partially oxidized Ru metal.
基金supported by the German Research Foundation (DFG) through contract GR 1503/38-1。
文摘Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three organic electrolytes.These processes are critical for the performance of Li-air batteries.Apart from studying the structure of the solvation shells in detail,AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO_(2)formation from Li^(+)and O_(2)−and the subsequent disproportionation of 2LiO_(2)into Li_(2)O_(2)+O_(2).By comparing the results of the simulations to gas phase calculations,the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions.
基金Projects(2006DFA41090,2007DFA40680) supported by the International Cooperation Project on Traditional Chinese Medicines of Ministry of Science and Technology of ChinaProject(20475066) supported by the National Natural Science Foundation of China
文摘To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprismanes (PNNPs): C6H6-.(NO2). (n=1-6) Heats of formation (HOFs), strain energies (SE), and disproportionation energy (DE) were obtained using B3LYP/6-311+G(2df, 2p)//B3LYP/6-31G* method by designing different isodesmic reactions, respectively. Detonation properties of PNNPs were obtained by the well-known KAMLET-JACOBS equations, using the predicted densities (p) obtained by Monte Carlo method and HOFs. It is found that they increase as the number of nitro groups n varies from 1 to 6, and PNNPs with n〉4 have excellent detonation properties The relative stability and the pyrolysis mechanism of PNNPs were evaluated by the calculated bond dissociation energy (BDE). The comparison of BDE suggests that rupturing the C--C bond is the trigger for thermolysis of PNNPs. The computed BDE for cleavage of C--C bond (88.5 kJ/mol) further demonstrates that only the hexa-nitrotriprismane can be considered to be the target of HEDMs.
基金Project supported by the National Natural Science Foundation of China(Grant No.51101167)the Ningbo Natural Science Foundation,China(Grant No.2013A610075)+4 种基金the Ningbo Science and Technology Project,China(Grant No.2013B10004)the Program of International Science and Technology Cooperation of China(Grant No.2010DFB53770)the China Postdoctoral Science Foundation(Grant No.2012M520943)the State Key Program of the National Natural Science Foundation of China(Grant No.2011AA03A401)the National Key Technologies R&D Program of China(Grant No.2012BAE01B03)
文摘The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting(SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders,acquiring degrees of alignment(DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy.
文摘BACKGROUND Congenital fiber-type disproportion(CFTD)is a form of congenital myopathy.CFTD is rare,especially when presenting in patients with critical illnesses.Here,we report a case of CFTD presenting with type II respiratory failure after delivery and provide a review of the literature on CFTD.CASE SUMMARY A 30-year-old woman was admitted to the obstetrics department of our hospital with premature rupture of the fetal membrane and with 7 h of regular contractions.After delivery,the patient experienced a refractory type II respiratory failure.Physical examination along with diagnostic procedures such as electromyography and biopsy confirmed CFTD.Use of invasive ventilator followed by intermittent use of noninvasive ventilator attenuated her symptoms.The patient recovered after ventilator-assisted respiration and was weaned off the noninvasive ventilator on the seventh day postpartum.CONCLUSION Congenital myopathy should be considered a differential diagnosis for type II respiratory failures that cannot be attributed to other diseases.