A new type of hybrid welding method called resistance plug welding (RPW) was firstly adopted to achieve the connecting of dissimilar steel, mainly as for the poor welding characteristics of high strength stee...A new type of hybrid welding method called resistance plug welding (RPW) was firstly adopted to achieve the connecting of dissimilar steel, mainly as for the poor welding characteristics of high strength steel produced by increasing carbon, manganese, silicon, etc. Microstructures and mechanical properties of RPW joint were analyzed by optical microscope,micro-hardness test and shear tensile measurement. Experimental results indicate that the RPW joint has a rounded rectangle nugget ^ and the size is larger than elliptical nugget of resistance spot welding (RSW) jo in t; the hardness value of RPW joint is evenly distributed, accordingly there is no hard brittle phases ; the shear tensile strength o f RPW joint increases by 20% in comparison with RSW joint under the same welding conditions.展开更多
The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characteriz...The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5).展开更多
Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning elec...Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Microstructure, divisions of the fusion zone and elemental diffusion distributions in the welded joints were investigated. Furthermore, solidification microstructure and S-ferrite distribution in the weld metal of these steels are also discussed.展开更多
Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the c...Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.展开更多
On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those...On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those new methods can ascertain the microstructure kind not only in the different characteristic zones of weld metal but also in the different morphologies in the heterogeneous mixture zone of weld metal. Those new methods. enrich and develop the traditional methods of predicting the microstructure of weld metal by Schaeffler Diagram, and are more concise and practical.展开更多
The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this k...The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed.展开更多
To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper...To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application.展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfe...Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfer,nitrogen escape phenomenon,weld appearance,nondestructive detection,nitrogen content distribution,microstructure and mechanical properties.There are two nitrogen sources of the nitrogen in the weld:high nitrogen base material and shielding gas.The effect of shielding gas is mainly reflected in these two aspects.The change of the droplet transfer mode affects the fusion ratio,N2in the shielding gas can increase nitrogen content and promote the nitrogen uniform distribution.The addition of 2%O_(2)to Ar matrix can change the metal transfer from globular transfer to spray transfer,high nitrogen base material is thereby dissolved more to the molten pool,making nitrogen content increase,ferrite decrease and the mechanical properties improve.When applying N2-containing shielding gas,arc stability becomes poor and short-circuiting transfer frequency increases due to the nitrogen escape from droplets and the molten pool.Performance of the joints is improved with N_(2)increasing,but internal gas pores are easier to appear because of the poor capacity of low alloy steel to dissolve nitrogen,The generation of pores will greatly reduce the impact resistance.4-8%N2content in shielding gas is recommended in this study considering the integrated properties of the dissimilar welded joint.展开更多
On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and ...On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and expressing weld metal microstnictiires of two kinds of dissimilar steel welded joints (pearlite/pearlite and austenite/pearlite) using austenitic filler materials by Schaeffler Diagram are suggested. Those new methods resolve some difficult problems which the microstructure kinds in two heterogeneous mixture zones of weld metal neighbouring two kinds of welded base metals are difficult to be accurately ascertained and the fluctuations of weld metal microstnictiires across fusion line are difficult to be conveniently expressed according to the traditional predicting method. The new predicting methods are more concise and practical.展开更多
TRIP980 high-strength steel plate/SPCC low-carbon steel plate were welded by RPW. The key factors such as size and material of filler were studied, and the structure, fusion ratio and mechanical properties of the RPW ...TRIP980 high-strength steel plate/SPCC low-carbon steel plate were welded by RPW. The key factors such as size and material of filler were studied, and the structure, fusion ratio and mechanical properties of the RPW joint were analyzed. The experimental results show that the calculation formulas of the length and diameter of the filler were designed reasonably. Q235 as a filler for RPW of TRIP980 high-strength steel plate/SPCC low-carbon steel plate is suitable according to schaeffler organization chart. The deposited metal of RPW joint is in the shape of “spool”,and the base metal and cap of deposited metal are alternately combined. The deposited metal has the characteristics of “locking” as rivets, which is beneficial to the improvement of mechanical properties of RPW joint. The nugget of RPW joint is uniform without deviates. TRIP980 high-strength steel plate, SPCC low-carbon steel plate, and filler were metallurgically bonded in the RPW joint.展开更多
The welded joint of dissimilar heat-resisting steels 20Crl2MoV (F12)and 12 Cr2MoWVTiB(102)generally works around 600°C.In this paper three kinds of ferritic electrodes are used for testing.They are R817 high- str...The welded joint of dissimilar heat-resisting steels 20Crl2MoV (F12)and 12 Cr2MoWVTiB(102)generally works around 600°C.In this paper three kinds of ferritic electrodes are used for testing.They are R817 high- strength electrode(CrllMoVNi),R347 low-strength electrode(Cr2MoVWB) and newly-developed R507MoNb medium-strength electrode.The study on the influence of those three different electrodes on carbon migration,HIC and hy- drogen diffusion shows that medium-strength electrodes can well control the carbon migration,and that the tendency to HIC in the joint formed by R817 is smaller than that by R347 instead.Considering the effect of weld metal transfor- mation on the restraint stress and hydrogen concentration of a joint,the hydro- gen distribution in the heat-affected zone(HAZ)is calculated by using finite ele- ment method(FEM)with stress and strain changing,and so the effect of the transformation behaviour on HIC is revealed.In addition,newly-developed R507MoNb electrodes,tested the elevated-temperature property,oxidation re- sistance and creep rupture strength,have fulfilled the technical standards con- cerned and passed the examination of on-the-spot operation.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
The dissimilar metal weld is demanding as well as the similar weld, however, dissimilar weld is more complex than similar weld due to the necessity of being applied in zones where a requirement is to improve some prop...The dissimilar metal weld is demanding as well as the similar weld, however, dissimilar weld is more complex than similar weld due to the necessity of being applied in zones where a requirement is to improve some properties. In this work the main purpose is to know the mechanical behavior of a dissimilar weld between HSLA Steel and Superduplex Stainless Steel (SDSS) to establish if the joint is feasible or not. The alloys were welded with GTAW process using a 60-deg and 90-deg single-V groove test specimens in order to observe the effect of the weld pass. The filler metal was chosen with the aid of Schaeffler diagram. It was found that the ER 25.10.4L filler metal provided the best equilibrium between ferrite and austenite phase in the Superduplex Stainless Steel final microstructure and a band of martensite in the HSLA steel final microstructure. The dissimilar joint presented acceptable mechanical properties which are superior to the HSLA in the as-received condition, but lower than the SDSS in the as-received condition, proving that the filler metal was the adequate.展开更多
Through laser swing welding of dissimilar steels,the microstructure and properties of welded joints of dissimilar steels under different heat treatment processes were investigated.In the test,the equilibrium phase dia...Through laser swing welding of dissimilar steels,the microstructure and properties of welded joints of dissimilar steels under different heat treatment processes were investigated.In the test,the equilibrium phase diagrams of the base materials 3Cr13 and VG10 were calculated by JMATPro software.The microstructures of the different regions of the welded joints after the original and heat treatment were analyzed by XRD and SEM,and the changes of the microhardness were tested.The test results show that a martensite-like structure is generated at the base material on the 3Cr13 side of the original welded joint,and a non-convective mixing zone exists in the fusion zone on the VG10 side.At this location,a block-like,island-like structure is embedded in the base material.There were lamellar carbide formation on this structure.After heat treatment,the amount of carbides in the welded joints is reduced,but the primary carbides in the VG10 base metal are difficult to eliminate by heat treatment.In addition,the lamellar carbides in the VG10 side fusion zone are polymerized to form network carbides.The hardness of the base metal near the fusion line on both sides of the original welded joint is relatively large,and the hardness of the heat affected zone gradually decreases with increasing distance from the center of the weld.After heat treatment,the overall hardness of the welded joint has increased significantly.Among them,the hardness increase is greatest at the quenching temperature of 1050°C,and VG10 can reach about 830 HV.展开更多
The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and micro...The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.展开更多
Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface...Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface defect under the parameters of welding current 121 A, welding voltage 15.4 V and welding speed 6 r/min. The microstructure of fiUer metal was analyzed by means of scanning electron microscopy. The filler metal and 6061 Al alloy were fused to form fusion welding interface, the fusion zone had a good bonding without any micro defect. The steel stud did not melt and brazing interface was formed between the filler metal and steel stud. Two different reaction layers existed in the brazing interface, the Fe2Al5 layer about 10 -12 p^m formed near the steel stud side, and the other layer was mainly composed of FeAl3. Nickel-rich zone was formed in the root toe area of the fillet weld, which was mainly composed of Al3Ni2. The tensile tests showed that the maximum shearing strength of the joints was 129 MPa. The joint was brittle fractured in the intermetallic compound layer where plenty of FeAl3 were distributed continuously.展开更多
T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rup...T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rupture tests. Creep transgranular ductile rupture occurred at the 10CrMo910 matrix in the T91+10CrMo910 welded joints and creep intergranular brittle rupture occurred at the 13CrMo44 HAZ in the T91+13CrMo44 joints. Microhardness measurements showed high hardness at the heat affected zone (HAZ) of T91 and a sharply drop at the 13CrMo44 HAZ during creep rupture. The metallographic tests showed that no obvious microstructure degradation was observed in the 10CrMo910 HAZ and matrix, while creep cracks appeared at the 13CrMo44 HAZ. T91 steel had relatively high creep resistant strength in the welded joints tested. Recovery occurred in the T91 HAZ with the growth of subgrain size and the decrease of dislocation density during creep. It was concluded that the dissimilar joints of T91 and low alloy heat-resistant steel should have close creep strength matching to increase the service life of the overall joints at elevated temperature.展开更多
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga...Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.展开更多
文摘A new type of hybrid welding method called resistance plug welding (RPW) was firstly adopted to achieve the connecting of dissimilar steel, mainly as for the poor welding characteristics of high strength steel produced by increasing carbon, manganese, silicon, etc. Microstructures and mechanical properties of RPW joint were analyzed by optical microscope,micro-hardness test and shear tensile measurement. Experimental results indicate that the RPW joint has a rounded rectangle nugget ^ and the size is larger than elliptical nugget of resistance spot welding (RSW) jo in t; the hardness value of RPW joint is evenly distributed, accordingly there is no hard brittle phases ; the shear tensile strength o f RPW joint increases by 20% in comparison with RSW joint under the same welding conditions.
基金supported by the Natural Science Foundation of Hebei(Grant No.E2019210292)Education Department of Hebei(Grant No.ZD2019102).
文摘The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5).
基金The work was supported by the Foundation of KeyLaboratory of Liquid Structure and Heredity of Materi-als, Ministry of Educat
文摘Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Microstructure, divisions of the fusion zone and elemental diffusion distributions in the welded joints were investigated. Furthermore, solidification microstructure and S-ferrite distribution in the weld metal of these steels are also discussed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675336,U1660101).
文摘Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.
文摘On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those new methods can ascertain the microstructure kind not only in the different characteristic zones of weld metal but also in the different morphologies in the heterogeneous mixture zone of weld metal. Those new methods. enrich and develop the traditional methods of predicting the microstructure of weld metal by Schaeffler Diagram, and are more concise and practical.
文摘The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed.
基金supported by the National Science and Technology Major Project of China (Grant No.2011ZX05056)
文摘To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application.
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
文摘Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfer,nitrogen escape phenomenon,weld appearance,nondestructive detection,nitrogen content distribution,microstructure and mechanical properties.There are two nitrogen sources of the nitrogen in the weld:high nitrogen base material and shielding gas.The effect of shielding gas is mainly reflected in these two aspects.The change of the droplet transfer mode affects the fusion ratio,N2in the shielding gas can increase nitrogen content and promote the nitrogen uniform distribution.The addition of 2%O_(2)to Ar matrix can change the metal transfer from globular transfer to spray transfer,high nitrogen base material is thereby dissolved more to the molten pool,making nitrogen content increase,ferrite decrease and the mechanical properties improve.When applying N2-containing shielding gas,arc stability becomes poor and short-circuiting transfer frequency increases due to the nitrogen escape from droplets and the molten pool.Performance of the joints is improved with N_(2)increasing,but internal gas pores are easier to appear because of the poor capacity of low alloy steel to dissolve nitrogen,The generation of pores will greatly reduce the impact resistance.4-8%N2content in shielding gas is recommended in this study considering the integrated properties of the dissimilar welded joint.
文摘On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and expressing weld metal microstnictiires of two kinds of dissimilar steel welded joints (pearlite/pearlite and austenite/pearlite) using austenitic filler materials by Schaeffler Diagram are suggested. Those new methods resolve some difficult problems which the microstructure kinds in two heterogeneous mixture zones of weld metal neighbouring two kinds of welded base metals are difficult to be accurately ascertained and the fluctuations of weld metal microstnictiires across fusion line are difficult to be conveniently expressed according to the traditional predicting method. The new predicting methods are more concise and practical.
基金Funded by the Inner Mongolia Autonomous Region Science and Technology Program (No. 2023YFHH0036)the Basic Scientific Research Fees for Colleges and Universities Directly under the Inner Mongolia (No. 2023QNJS002)。
文摘TRIP980 high-strength steel plate/SPCC low-carbon steel plate were welded by RPW. The key factors such as size and material of filler were studied, and the structure, fusion ratio and mechanical properties of the RPW joint were analyzed. The experimental results show that the calculation formulas of the length and diameter of the filler were designed reasonably. Q235 as a filler for RPW of TRIP980 high-strength steel plate/SPCC low-carbon steel plate is suitable according to schaeffler organization chart. The deposited metal of RPW joint is in the shape of “spool”,and the base metal and cap of deposited metal are alternately combined. The deposited metal has the characteristics of “locking” as rivets, which is beneficial to the improvement of mechanical properties of RPW joint. The nugget of RPW joint is uniform without deviates. TRIP980 high-strength steel plate, SPCC low-carbon steel plate, and filler were metallurgically bonded in the RPW joint.
文摘The welded joint of dissimilar heat-resisting steels 20Crl2MoV (F12)and 12 Cr2MoWVTiB(102)generally works around 600°C.In this paper three kinds of ferritic electrodes are used for testing.They are R817 high- strength electrode(CrllMoVNi),R347 low-strength electrode(Cr2MoVWB) and newly-developed R507MoNb medium-strength electrode.The study on the influence of those three different electrodes on carbon migration,HIC and hy- drogen diffusion shows that medium-strength electrodes can well control the carbon migration,and that the tendency to HIC in the joint formed by R817 is smaller than that by R347 instead.Considering the effect of weld metal transfor- mation on the restraint stress and hydrogen concentration of a joint,the hydro- gen distribution in the heat-affected zone(HAZ)is calculated by using finite ele- ment method(FEM)with stress and strain changing,and so the effect of the transformation behaviour on HIC is revealed.In addition,newly-developed R507MoNb electrodes,tested the elevated-temperature property,oxidation re- sistance and creep rupture strength,have fulfilled the technical standards con- cerned and passed the examination of on-the-spot operation.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
文摘The dissimilar metal weld is demanding as well as the similar weld, however, dissimilar weld is more complex than similar weld due to the necessity of being applied in zones where a requirement is to improve some properties. In this work the main purpose is to know the mechanical behavior of a dissimilar weld between HSLA Steel and Superduplex Stainless Steel (SDSS) to establish if the joint is feasible or not. The alloys were welded with GTAW process using a 60-deg and 90-deg single-V groove test specimens in order to observe the effect of the weld pass. The filler metal was chosen with the aid of Schaeffler diagram. It was found that the ER 25.10.4L filler metal provided the best equilibrium between ferrite and austenite phase in the Superduplex Stainless Steel final microstructure and a band of martensite in the HSLA steel final microstructure. The dissimilar joint presented acceptable mechanical properties which are superior to the HSLA in the as-received condition, but lower than the SDSS in the as-received condition, proving that the filler metal was the adequate.
基金Development of High-end Manufacturing Equipment and Materials for the Metal Knife and Scissors Industry in Yangjiang(510224133196)Yangjiang High Power Laser Application Laboratory Co.,Ltd.Supports the Construction of New Research and Development Institutions in the East and West of Guangdong(809099997119)Development of Additive Manufacturing Technology for Blade Laser Cladding(2017036)。
文摘Through laser swing welding of dissimilar steels,the microstructure and properties of welded joints of dissimilar steels under different heat treatment processes were investigated.In the test,the equilibrium phase diagrams of the base materials 3Cr13 and VG10 were calculated by JMATPro software.The microstructures of the different regions of the welded joints after the original and heat treatment were analyzed by XRD and SEM,and the changes of the microhardness were tested.The test results show that a martensite-like structure is generated at the base material on the 3Cr13 side of the original welded joint,and a non-convective mixing zone exists in the fusion zone on the VG10 side.At this location,a block-like,island-like structure is embedded in the base material.There were lamellar carbide formation on this structure.After heat treatment,the amount of carbides in the welded joints is reduced,but the primary carbides in the VG10 base metal are difficult to eliminate by heat treatment.In addition,the lamellar carbides in the VG10 side fusion zone are polymerized to form network carbides.The hardness of the base metal near the fusion line on both sides of the original welded joint is relatively large,and the hardness of the heat affected zone gradually decreases with increasing distance from the center of the weld.After heat treatment,the overall hardness of the welded joint has increased significantly.Among them,the hardness increase is greatest at the quenching temperature of 1050°C,and VG10 can reach about 830 HV.
基金financially supported by the National Natural Science Foundation of China(No.51704001)the Natural Science Foundation of Anhui Province,China(No.2008085J23)the Talent Project of Anhui Province,China(Z175050020001)。
文摘The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20131261)
文摘Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface defect under the parameters of welding current 121 A, welding voltage 15.4 V and welding speed 6 r/min. The microstructure of fiUer metal was analyzed by means of scanning electron microscopy. The filler metal and 6061 Al alloy were fused to form fusion welding interface, the fusion zone had a good bonding without any micro defect. The steel stud did not melt and brazing interface was formed between the filler metal and steel stud. Two different reaction layers existed in the brazing interface, the Fe2Al5 layer about 10 -12 p^m formed near the steel stud side, and the other layer was mainly composed of FeAl3. Nickel-rich zone was formed in the root toe area of the fillet weld, which was mainly composed of Al3Ni2. The tensile tests showed that the maximum shearing strength of the joints was 129 MPa. The joint was brittle fractured in the intermetallic compound layer where plenty of FeAl3 were distributed continuously.
基金the financial support of the Shanxi Natural Science Foundation(20031051) Shanxi Science Institute of Power.
文摘T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rupture tests. Creep transgranular ductile rupture occurred at the 10CrMo910 matrix in the T91+10CrMo910 welded joints and creep intergranular brittle rupture occurred at the 13CrMo44 HAZ in the T91+13CrMo44 joints. Microhardness measurements showed high hardness at the heat affected zone (HAZ) of T91 and a sharply drop at the 13CrMo44 HAZ during creep rupture. The metallographic tests showed that no obvious microstructure degradation was observed in the 10CrMo910 HAZ and matrix, while creep cracks appeared at the 13CrMo44 HAZ. T91 steel had relatively high creep resistant strength in the welded joints tested. Recovery occurred in the T91 HAZ with the growth of subgrain size and the decrease of dislocation density during creep. It was concluded that the dissimilar joints of T91 and low alloy heat-resistant steel should have close creep strength matching to increase the service life of the overall joints at elevated temperature.
基金the funding support of Babol Noshirvani University of Technology (No. BNUT/370167/97)
文摘Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.