Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusi...Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.展开更多
Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys,the mechanical property of them was assessed under fatigue crack growth...Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys,the mechanical property of them was assessed under fatigue crack growth rate tests.For evaluation of fatigue crack growth rate,three points bending specimens were used.The correlation between the range of stress intensity factor and crack growth rate was determined in different zones of the annealed weld joint.Fatigue crack growth rates were obviously different in different zones of weld joint of dissimilar titanium alloys,due to their different microstructures.Scanning electron microscope examinations were conducted on the fracture surface in order to determine the relevant fracture mechanisms and crack growth mechanisms with respect to the details of microstructure.展开更多
基金financial support provided by Beijing Aeronautical Manufacturing Technology Research Institutethe help provided by Science and Technology, China, on Power Beam Processes Laboratory at Beijing Aeronautical Manufacturing Technology Research Institute, China
文摘Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.
基金Funded in Part by the Grant from Technology and Industry for National Defense,China(No.AXXD1818)。
文摘Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys,the mechanical property of them was assessed under fatigue crack growth rate tests.For evaluation of fatigue crack growth rate,three points bending specimens were used.The correlation between the range of stress intensity factor and crack growth rate was determined in different zones of the annealed weld joint.Fatigue crack growth rates were obviously different in different zones of weld joint of dissimilar titanium alloys,due to their different microstructures.Scanning electron microscope examinations were conducted on the fracture surface in order to determine the relevant fracture mechanisms and crack growth mechanisms with respect to the details of microstructure.