期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental study on the energy dissipation characteristics of debris flow deceleration baffles 被引量:3
1
作者 WANG Fei CHEN Xiao-qing CHEN Jian-gang 《Journal of Mountain Science》 SCIE CSCD 2017年第10期1951-1960,共10页
Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of... Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m^3 reached the maximum when the experimental flume slope is 12°. 展开更多
关键词 Debris flow Drainage channel Baffles energy dissipation Flow density
下载PDF
Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene 被引量:1
2
作者 Wenjuan XU Hong GAO LiLan GAO Xu CHEN Yong WANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2013年第1期103-109,共7页
A series of tensile and ratcheting experiments for compacted polytetrafluoroethylene (PTFE) and bronze filled PTFE (PTFE/bronze) were conducted on dynamic mechanical analyzer (DMA-Q800). The effects of mean stre... A series of tensile and ratcheting experiments for compacted polytetrafluoroethylene (PTFE) and bronze filled PTFE (PTFE/bronze) were conducted on dynamic mechanical analyzer (DMA-Q800). The effects of mean stress, stress amplitude and temperature on the ratcheting behaviors of PTFE and PTFE/bronze were investigated. It is found that the stress-strain response of PTFE/bronze is nonlinear and its elastic modulus is higher than that of pure PTFE. For uniaxial ratcheting test, the dissipation strain energy density (DSED) decreases rapidly in the first l0 cycles and approaches a constant after 20 cycles. The ratcheting strain and the DSED corresponding to 100 cycles increase with increasing mean stress, stress amplitude and temperature. Additionally, the DSED and ratcheting strain of PTFE/bronze are much lower than those of pure PTFE under the same experimental conditions. It is also found that both pure PTFE and PTFE/bronze present cyclic hardening characteristics. Above all, the addition of bronze can improve both the uniaxial tensile property and the cyclic property of PTFE. 展开更多
关键词 bronze filled polytetrafluoroethylene (PTFE/ bronze) uniaxial tensile behavior ratcheting behavior dissipation strain energy density (DSED)
原文传递
Damage Studies of Brittle-Ductile Transition in PP EPDM Blends
3
作者 李强 郑文革 +1 位作者 漆宗能 吴选征 《Science China Chemistry》 SCIE EI CAS 1993年第11期1300-1306,共7页
Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with comp... Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with computer image analysis (CIA) and the transition of shear yielding zone (A_(sh)) with rubber volume fraction (V_f) was also manipulated. Results showed that the B-D transition of impact strength of blends corresponded to the fracture mechanism in PP/EPDM blends, from matrix crazing to matrix shear yielding. In addition, two new parameters, density of energy dissipation for crazing zone (F_(cz)) and for shear yielding zone (F_(sh)), are first obtained in this paper. The value of F_(sh) is about four times larger than that of F_(cz) for PP/EPDM blends, which confirmed that the matrix shear yielding is a more effective way of energy dissipation in blends. 展开更多
关键词 brittle-ductile transition damage studies pereolation model density of energy dissipation for crazing zone(F_(cz)) density of energy dissipation for shear yielding zone(F_(sb)).
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部