期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Natural consolidation characteristics of viscous debris flow deposition 被引量:2
1
作者 HE Song-Tang WANG Dao-Jie +2 位作者 CHEN Shun ZHANG Shu-Juan CHANG Shi-Qiu 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1723-1734,共12页
Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive under... Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive understanding about the entire consolidation process and focused on exploring pore water pressure and volumetric water content variations of the deposit body during natural consolidation under different conditions taking the viscous debris flow mass as a study subject and by flume experiments. The results indicate that, as the color of the debris changed from initial dark green to grayish-white color, the initial deposit thickness declined by 3% and 2.8% over a permeable and impermeable sand bed, respectively. A positive correlation was observed between pore water pressure and depth in the deposit for both scenarios, with deeper depths being related to greater pore water pressure. For the permeable environment, the average dissipation rate of pore water pressure measured at depths of 0.10 m and 0.05 m were 0.0172 Pa/d and 0.0144 Pa/d, respectively, showing a positivechanging trend with increasing depth. Under impermeable conditions, the average dissipation rates at different depths were similar, while the volumetric water content in the deposit had a positive correlation with depth. The reduction of water content in the deposit accelerated with depth under impermeable sand bed boundary conditions, but was not considerably correlated with depth under permeable sand bed boundary conditions. However, the amount of discharged water from the deposit was greater and consolidation occurred faster in permeable conditions. This indicates that the permeability of the boundary sand bed has a significant impact on the progress of consolidation. This research demonstrates that pore water and pressure dissipations are present during the entire viscous debris consolidation process. Contrasting with dilute flows, pore pressure dissipation in viscous flows cannot be completed in a matter of minutes or even hours, requiring longer completion time — 3 to 5 days and even more. Additionally, the dissipation of the pore water pressure lagged the reduction of the water content. During the experiment, the dissipation rate fluctuated substantially, indicating a close relationship betweenthe dissipation process and the physical properties of broadly graded soils. 展开更多
关键词 Viscous debris flow Natural consolidation dissipation of pore water pressure Volumetric water content Flume experiment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部