Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)c...To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend.展开更多
In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dis...In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries.展开更多
Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dis...Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results.展开更多
The phenomenon of marital dissolution in later life,also referred to as“gray divorce”,is described on the rise in contemporary Western societies.This article contributes to the study of marriage breakdown in older a...The phenomenon of marital dissolution in later life,also referred to as“gray divorce”,is described on the rise in contemporary Western societies.This article contributes to the study of marriage breakdown in older age,with a specific focus on Italian society.First,the temporal trends of this phenomenon are reconstructed using official statistics.The data reveal that,although still relatively rare,the dissolution of marriage in later life is expanding in Italy.The analysis of the period from 1974 to 2015 indicates a rise in the average age at separation,a higher percentage of spouses over 50 years on the total number of couples obtaining legal separation,and an increase in the proportion of Italian spouses separating after many years of marriage.Furthermore,data from the national survey“Family and Social Subjects”,conducted in 2016 by the Italian National Institute of Statistics,are utilized to explore the relationship between specific traits of those who separated and their tendency to dissolve marriages before or after the age of 50.The data suggest that individuals with characteristics such as lower educational attainment,residence in the South and Islands,and adherence to more traditional family models are more likely to experience separation in later life.展开更多
The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2...The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2)O_(3) dissolution was the diffusionin molten slag.It was found that the dissolution curves of Al_(2)O_(3) particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al_(2)O_(3) ratio of slag.A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al_(2)O_(3) in slag.Diffusion coefficients of Al_(2)O_(3) in slag were calculated as 2.8×10to 4.1×10m~2/s at the temperature of 1773-1873 K.The dissolution rate of Al_(2)O_(3) increased with higher temperature,CaO/Al_(2)O_(3),and particle size.A new model was shown to be v_(Al_(2)O_(3))=0.16×r_(0)^(1.58)×x^(3.52)×(T-T_(mp))^(1.11)to predict the dissolution rate and the total dissolution time of Al_(2)O_(3) inclusions with various sizes,where vAl_(2)O_(3) is the dissolution rate of Al_(2)O_(3) in volume,μm^(3)/s;x is the value of CaO/Al_(2)O_(3) mass ratio;R_(0) is the initial radius of Al_(2)O_(3),μm;T is the temperature,K;T_(mp) is the melting point of slag,K.展开更多
Hydrogen evolution is normally associated with the corrosion or dissolution of Mg alloys in aqueous solutions.This work studied the corrosion behavior of sputtered pure Mg,Mg82Zn18(at.%),Mg64Zn36(at.%),and pure Zn in ...Hydrogen evolution is normally associated with the corrosion or dissolution of Mg alloys in aqueous solutions.This work studied the corrosion behavior of sputtered pure Mg,Mg82Zn18(at.%),Mg64Zn36(at.%),and pure Zn in 3.5%Na Cl solution.Mg64Zn36had(ⅰ)an amorphous microstructure with some nano-scale grains,(ⅱ)a corrosion rate substantially lower than that of pure Mg,and(ⅲ)no hydrogen evolution during corrosion or anodic dissolution,because the positive corrosion potential retarded the cathodic hydrogen evolution.This is a new route to prevent hydrogen evolution during Mg corrosion,which has never previously been realized.展开更多
Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa...Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.展开更多
Cefuroxime Axetil (CA) a widely used cephalosporin antibiotic displays low aqueous solubility and high membrane penetrability. This results in its solubility driven variable and/or low oral bioavailability and therape...Cefuroxime Axetil (CA) a widely used cephalosporin antibiotic displays low aqueous solubility and high membrane penetrability. This results in its solubility driven variable and/or low oral bioavailability and therapeutic efficacy as a major drawback. Thus, most of the goal of our study was to increase the solubility as well as dissolution rate of CA using the simple and cost-effective solid dispersion (SD) method. At first, the SD formulations of CA were prepared at various weight ratios of Carplex-67 and PEG-4000 by solvent evaporation technique. These new formulations were then subjected to an in-vitro drug release performance study and tested for physicochemical characterization to distinguish the thermal behavior, crystallinity, interactions phenomena, and surface morphology. Among the formulated Cefuroxime Axetil Solid Dispersion (CSD), CSD-8 which contained CA, Carplex-67, and PEG-4000 at the weight ratio 1:3:2, respectively showed the most significant (p in-vitro dissolution in water, Gastric Simulated Fluid (GSF), and Intestinal Simulated Fluid (ISF). This study also showed a significant (p < 0.001) increase in drug release compared to the marketed product. Therefore, it is supposed to be a promising alternative to conventional antimicrobial therapy.展开更多
Lithium-rich manganese-based materials(LRMs) are promising cathode for high-energy-density lithiumion batteries due to their high capacity,low toxicity,and low cost.However,LRMs suffer from serious voltage decay and c...Lithium-rich manganese-based materials(LRMs) are promising cathode for high-energy-density lithiumion batteries due to their high capacity,low toxicity,and low cost.However,LRMs suffer from serious voltage decay and capacity fade due to continual migration and dissolution of transition metal ions(TMs) during cycling process.Herein,a novel strategy is proposed to inhibit the TMs migration of LRMs through a modified separator by means of functionalized carbon coating layer,which depends on the chemical constraint of the abundant functional groups in the modified super P.In addition,it has been found that the dissolution of TMs can be restrained based on the Le Chatelier's principle.Moreover,the modified separator owns good wettability toward the electrolyte.As a result,the LRMs cathode with the modified separator delivers a high discharge capacity of 329.93 mA h g-1 at 0.1 C,and achieves good cyclic performance,the enhanced reaction kinetics and low voltage decay.Therefore,this work provides a new idea to promote the comprehensive electrochemical performances of Li-ion batteries with LRMs cathode through a strategy of separator modification.展开更多
In recirculating aquaculture systems(RASs),the effective treatment of aquaculture tailwater is essential to maintain the health of the RAS.This study investigated the optimal time and method for tailwater treatment du...In recirculating aquaculture systems(RASs),the effective treatment of aquaculture tailwater is essential to maintain the health of the RAS.This study investigated the optimal time and method for tailwater treatment during three periods of the aquaculture of the Litopenaeus vannamei:nursery(0–26 d),middle(27–57 d),and later(57–104 d).The variation of several water parameters during the dissolution of total suspended solid(TSS)in tailwater,applied with the effects of ozone on the microorganism and water quality parameters were investigated.Results showed that the TSS concentrations in tailwater decreased with time,although not significantly(P>0.05),whereas total ammonia nitrogen(TAN),nitrite(NO-2-N),and nitrate(NO_(3)^(-)-N)increased significantly(P<0.05).Therefore,TSS should be removed from the tailwater as early as possible,being most optimal within 4 h.Ozone removed 38.24%–48.95%of TSS,17.78%–90.14%of TAN,and 87.50%–98.90%of NO-2-N after 4 h of treatment.However,it resulted in the significant accumulation of NO_(3)^(-)-N.Moreover,the total number of Vibrio and bacterial counts in aquaculture tailwater was reduced completely by ozone within 4 h.Thus,these results provided technical details and data support for the effective treatment of tailwater from shrimp RAS.展开更多
The element geochemical characteristics and diagenetic alteration products of tuffaceous components in sandstone reservoirs of Paleogene Wenchang Formation in typical subsags of the Huizhou-Lufeng area of the Zhu I De...The element geochemical characteristics and diagenetic alteration products of tuffaceous components in sandstone reservoirs of Paleogene Wenchang Formation in typical subsags of the Huizhou-Lufeng area of the Zhu I Depression,Pearl River Mouth Basin,were identified through microscopic analysis and quantitative analysis of main and trace elements.The impacts of dissolution of different tuffaceous components on physical properties of reservoirs were discussed through quantitative characterization of reservoir physical properties.The results show that there are mainly four types of tuffaceous components in the study area,which are acidic,intermediate,basic and alkaline tuffaceous components.The acidic tuffaceous components evolved in a process of strong alteration and weak dissolution of alteration products,with a large amount of kaolinite precipitated during alteration to disenable the improvement of porosity and permeability.The intermediate and alkaline tuffaceous components evolved in a process of strong dissolution of tuffaceous components and strong alteration of residual tuffaceous components;the dissolution of tuffaceous components created intergranular pores,but the alteration products such as autogenic quartz,apatite and illite deteriorated the pore structure;ultimately,the dissolution of tuffaceous components resulted in the increase of porosity but no increase of permeability of the reservoir.The basic tuffaceous components dominantly evolved in a process of dissolution of tuffaceous components to strong dissolution of alteration products;both tuffaceous components between particles and laumontite generated from alteration can be strongly dissolved to create pores;thus,the dissolution of tuffaceous components can significantly increase the physical properties of the reservoir.展开更多
The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the Ca...The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.展开更多
The influence of surface dissolution on flotation separation of fine ilmenite from titanaugite was investigated through infrared spectroscopic (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) test. The ...The influence of surface dissolution on flotation separation of fine ilmenite from titanaugite was investigated through infrared spectroscopic (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) test. The results show that surface dissolution in weak acid solution is helpful to enlarge the floatability difference between ilmenite and titanaugite. In weak acidic solution, as sodium oleate mainly interacts with Fe which results in ilmenite flotation, and surface dissolution is beneficial to its oxidation, the floatability of ilmenite after surface dissolution is increased; meanwhile, sodium oleate interacts with Ca and Mg which results in titanangite flotation, and the quantities of Ca and Mg on the surface of titanautite are decreased due to the surface dissolution, so the floatability of titanaugite after surface dissolution is depressed. For an ilmenite ore obtained from Panzhihua with TiO2 grade of 8.41%, flotation after surface dissolution treatment could increase TiO2 grade of rough concentrate from 26.7% to 31.73 %.展开更多
The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectrosc...The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectroscopy.Bioleaching results show that chalcopyrite dissolution rate increases with the decrease of the initial pH in chemical leaching,while the influence of initial pH on bioleaching is on the contrary.The presence of Acidianus manzaensis does not promote chalcopyrite dissolution under initial pH1.0,which mainly results from serious inhibition of high acidity to the growth of Acidianus manzaensis.Electrochemical experiments results show that anodic oxidation currents of electrolyte with or without Acidianus manzaensis both increase with the increase of initial pH,and covellite and sulfur are detected on the electrode surface.The results confirm that chalcopyrite dissolution in chemical leaching is under the combined action of oxidation and non-oxidation of proton,with conversion of chalcopyrite to covellite and elemental sulfur.展开更多
The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was mu...The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step.展开更多
The crystal structure, morphology, dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in Na OH solution under atmospheric pressure were systematically investigated by XRD and SEM. The results sh...The crystal structure, morphology, dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in Na OH solution under atmospheric pressure were systematically investigated by XRD and SEM. The results show that the size of single crystal of gibbsite in gibbsitic bauxite is smaller than that in pure gibbsite, but the interplanar distance is larger than that of pure gibbsite, which result in more defects in the crystal and less energy needed to dissolve in alkaline solution for the gibbsitic bauxite. The dissolution kinetic equations of gibbsitic bauxite and pure gibbsite were established, and the corresponding activation energies were calculated to be 99.144 and 115.149 k J/mol, respectively.展开更多
Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu int...Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study.展开更多
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20272 and52074073)the Fundamental Research Funds for the Central Universities(No.2325035)。
文摘To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend.
基金supported by the Research and Development Initiative for Scientific Innovation of New Generation Batteries(RISING)Projects,RISING2[JPNP16001]and RISING3[JPNP21006],commissioned by of the New Energy and Industrial Technology Development Organization(NEDO),Japanthe State Scholarship Fund of the China Scholarship Council[No.201906230294]for their support
文摘In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries.
基金funded by the COMET program within the K2 Center “Integrated Computational MaterialProcess and Product Engineering (IC-MPPE)”, Project No. 859480+7 种基金supported by the Austrian Federal Ministries for TransportInnovationand Technology (BMVIT)Digital and Economic Affairs (BMDW)represented by the Austrian Research Funding Association (FFG)the federal states of StyriaUpper Austriaand Tyrol
文摘Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results.
文摘The phenomenon of marital dissolution in later life,also referred to as“gray divorce”,is described on the rise in contemporary Western societies.This article contributes to the study of marriage breakdown in older age,with a specific focus on Italian society.First,the temporal trends of this phenomenon are reconstructed using official statistics.The data reveal that,although still relatively rare,the dissolution of marriage in later life is expanding in Italy.The analysis of the period from 1974 to 2015 indicates a rise in the average age at separation,a higher percentage of spouses over 50 years on the total number of couples obtaining legal separation,and an increase in the proportion of Italian spouses separating after many years of marriage.Furthermore,data from the national survey“Family and Social Subjects”,conducted in 2016 by the Italian National Institute of Statistics,are utilized to explore the relationship between specific traits of those who separated and their tendency to dissolve marriages before or after the age of 50.The data suggest that individuals with characteristics such as lower educational attainment,residence in the South and Islands,and adherence to more traditional family models are more likely to experience separation in later life.
基金financially supported by the National Nature Science Foundation of China(Nos.U1860206,51725402)the Science and Technology Program of Hebei,China(Nos.20311006D,20591001D)。
文摘The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2)O_(3) dissolution was the diffusionin molten slag.It was found that the dissolution curves of Al_(2)O_(3) particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al_(2)O_(3) ratio of slag.A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al_(2)O_(3) in slag.Diffusion coefficients of Al_(2)O_(3) in slag were calculated as 2.8×10to 4.1×10m~2/s at the temperature of 1773-1873 K.The dissolution rate of Al_(2)O_(3) increased with higher temperature,CaO/Al_(2)O_(3),and particle size.A new model was shown to be v_(Al_(2)O_(3))=0.16×r_(0)^(1.58)×x^(3.52)×(T-T_(mp))^(1.11)to predict the dissolution rate and the total dissolution time of Al_(2)O_(3) inclusions with various sizes,where vAl_(2)O_(3) is the dissolution rate of Al_(2)O_(3) in volume,μm^(3)/s;x is the value of CaO/Al_(2)O_(3) mass ratio;R_(0) is the initial radius of Al_(2)O_(3),μm;T is the temperature,K;T_(mp) is the melting point of slag,K.
基金supported by National Natural Science Foundation of China No.51801168 and No.51731008Natural Science Foundation of Fujian Province No.2018J05093。
文摘Hydrogen evolution is normally associated with the corrosion or dissolution of Mg alloys in aqueous solutions.This work studied the corrosion behavior of sputtered pure Mg,Mg82Zn18(at.%),Mg64Zn36(at.%),and pure Zn in 3.5%Na Cl solution.Mg64Zn36had(ⅰ)an amorphous microstructure with some nano-scale grains,(ⅱ)a corrosion rate substantially lower than that of pure Mg,and(ⅲ)no hydrogen evolution during corrosion or anodic dissolution,because the positive corrosion potential retarded the cathodic hydrogen evolution.This is a new route to prevent hydrogen evolution during Mg corrosion,which has never previously been realized.
基金The National Natural Science Foundation of China under contract No.42202157the China National Offshore Oil Corporation Co.,Ltd.Major Production and Scientific Research Program under contract No.2019KT-SC-22。
文摘Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.
文摘Cefuroxime Axetil (CA) a widely used cephalosporin antibiotic displays low aqueous solubility and high membrane penetrability. This results in its solubility driven variable and/or low oral bioavailability and therapeutic efficacy as a major drawback. Thus, most of the goal of our study was to increase the solubility as well as dissolution rate of CA using the simple and cost-effective solid dispersion (SD) method. At first, the SD formulations of CA were prepared at various weight ratios of Carplex-67 and PEG-4000 by solvent evaporation technique. These new formulations were then subjected to an in-vitro drug release performance study and tested for physicochemical characterization to distinguish the thermal behavior, crystallinity, interactions phenomena, and surface morphology. Among the formulated Cefuroxime Axetil Solid Dispersion (CSD), CSD-8 which contained CA, Carplex-67, and PEG-4000 at the weight ratio 1:3:2, respectively showed the most significant (p in-vitro dissolution in water, Gastric Simulated Fluid (GSF), and Intestinal Simulated Fluid (ISF). This study also showed a significant (p < 0.001) increase in drug release compared to the marketed product. Therefore, it is supposed to be a promising alternative to conventional antimicrobial therapy.
基金supported financially by the National Natural Science Foundation of China (U19A2018)the Key Project of Strategic New Industry of Hunan Province (2019GK2032)+2 种基金the Natural Science Foundation of Hunan Province (2021JJ30651)the Science and Technology Program of Xiangtan (GX-ZD20211004)Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210635)。
文摘Lithium-rich manganese-based materials(LRMs) are promising cathode for high-energy-density lithiumion batteries due to their high capacity,low toxicity,and low cost.However,LRMs suffer from serious voltage decay and capacity fade due to continual migration and dissolution of transition metal ions(TMs) during cycling process.Herein,a novel strategy is proposed to inhibit the TMs migration of LRMs through a modified separator by means of functionalized carbon coating layer,which depends on the chemical constraint of the abundant functional groups in the modified super P.In addition,it has been found that the dissolution of TMs can be restrained based on the Le Chatelier's principle.Moreover,the modified separator owns good wettability toward the electrolyte.As a result,the LRMs cathode with the modified separator delivers a high discharge capacity of 329.93 mA h g-1 at 0.1 C,and achieves good cyclic performance,the enhanced reaction kinetics and low voltage decay.Therefore,this work provides a new idea to promote the comprehensive electrochemical performances of Li-ion batteries with LRMs cathode through a strategy of separator modification.
基金Supported by the National Key R&D Program of China(No.2019YFD0900502)。
文摘In recirculating aquaculture systems(RASs),the effective treatment of aquaculture tailwater is essential to maintain the health of the RAS.This study investigated the optimal time and method for tailwater treatment during three periods of the aquaculture of the Litopenaeus vannamei:nursery(0–26 d),middle(27–57 d),and later(57–104 d).The variation of several water parameters during the dissolution of total suspended solid(TSS)in tailwater,applied with the effects of ozone on the microorganism and water quality parameters were investigated.Results showed that the TSS concentrations in tailwater decreased with time,although not significantly(P>0.05),whereas total ammonia nitrogen(TAN),nitrite(NO-2-N),and nitrate(NO_(3)^(-)-N)increased significantly(P<0.05).Therefore,TSS should be removed from the tailwater as early as possible,being most optimal within 4 h.Ozone removed 38.24%–48.95%of TSS,17.78%–90.14%of TAN,and 87.50%–98.90%of NO-2-N after 4 h of treatment.However,it resulted in the significant accumulation of NO_(3)^(-)-N.Moreover,the total number of Vibrio and bacterial counts in aquaculture tailwater was reduced completely by ozone within 4 h.Thus,these results provided technical details and data support for the effective treatment of tailwater from shrimp RAS.
基金Supported by the China National Natural Science Foundation(41872140)Taishan Scholars and Young Experts Project(201909061)+1 种基金Qingdao Marine Science and Technology Pilot Special Fund for National Laboratory in Shandong Province(2021QNLM020001)Central University Innovation Fund(20CX06067A).
文摘The element geochemical characteristics and diagenetic alteration products of tuffaceous components in sandstone reservoirs of Paleogene Wenchang Formation in typical subsags of the Huizhou-Lufeng area of the Zhu I Depression,Pearl River Mouth Basin,were identified through microscopic analysis and quantitative analysis of main and trace elements.The impacts of dissolution of different tuffaceous components on physical properties of reservoirs were discussed through quantitative characterization of reservoir physical properties.The results show that there are mainly four types of tuffaceous components in the study area,which are acidic,intermediate,basic and alkaline tuffaceous components.The acidic tuffaceous components evolved in a process of strong alteration and weak dissolution of alteration products,with a large amount of kaolinite precipitated during alteration to disenable the improvement of porosity and permeability.The intermediate and alkaline tuffaceous components evolved in a process of strong dissolution of tuffaceous components and strong alteration of residual tuffaceous components;the dissolution of tuffaceous components created intergranular pores,but the alteration products such as autogenic quartz,apatite and illite deteriorated the pore structure;ultimately,the dissolution of tuffaceous components resulted in the increase of porosity but no increase of permeability of the reservoir.The basic tuffaceous components dominantly evolved in a process of dissolution of tuffaceous components to strong dissolution of alteration products;both tuffaceous components between particles and laumontite generated from alteration can be strongly dissolved to create pores;thus,the dissolution of tuffaceous components can significantly increase the physical properties of the reservoir.
基金supported by the National Natural Science Foundation of China(52272022)the Special Project of Central Government for Local Science and Technology Development of Hubei Province(2019ZYYD076)the Innovation and Entrepreneurship Fund of Wuhan University of Science and Technology(D202202171045002669).
文摘The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.
基金Project (2007CB613602) supported by the National Basic Research Program of China Project (20090162110053) supported by Doctoral Fund of Ministry of Education of China Project (CX2009B049) supported by Hunan Provincial Innovation Foundation For Postgraduate, China
文摘The influence of surface dissolution on flotation separation of fine ilmenite from titanaugite was investigated through infrared spectroscopic (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) test. The results show that surface dissolution in weak acid solution is helpful to enlarge the floatability difference between ilmenite and titanaugite. In weak acidic solution, as sodium oleate mainly interacts with Fe which results in ilmenite flotation, and surface dissolution is beneficial to its oxidation, the floatability of ilmenite after surface dissolution is increased; meanwhile, sodium oleate interacts with Ca and Mg which results in titanangite flotation, and the quantities of Ca and Mg on the surface of titanautite are decreased due to the surface dissolution, so the floatability of titanaugite after surface dissolution is depressed. For an ilmenite ore obtained from Panzhihua with TiO2 grade of 8.41%, flotation after surface dissolution treatment could increase TiO2 grade of rough concentrate from 26.7% to 31.73 %.
基金Projects (50974140,51274257) supported by the National Natural Science Foundation of ChinaProject (JXXJBS11003) supported by the Doctor Initiating Foundation of Jiangxi University of Science and Technology,China
文摘The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectroscopy.Bioleaching results show that chalcopyrite dissolution rate increases with the decrease of the initial pH in chemical leaching,while the influence of initial pH on bioleaching is on the contrary.The presence of Acidianus manzaensis does not promote chalcopyrite dissolution under initial pH1.0,which mainly results from serious inhibition of high acidity to the growth of Acidianus manzaensis.Electrochemical experiments results show that anodic oxidation currents of electrolyte with or without Acidianus manzaensis both increase with the increase of initial pH,and covellite and sulfur are detected on the electrode surface.The results confirm that chalcopyrite dissolution in chemical leaching is under the combined action of oxidation and non-oxidation of proton,with conversion of chalcopyrite to covellite and elemental sulfur.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(CX2014B091)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step.
基金Projects(5110404151174054+2 种基金51374065)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘The crystal structure, morphology, dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in Na OH solution under atmospheric pressure were systematically investigated by XRD and SEM. The results show that the size of single crystal of gibbsite in gibbsitic bauxite is smaller than that in pure gibbsite, but the interplanar distance is larger than that of pure gibbsite, which result in more defects in the crystal and less energy needed to dissolve in alkaline solution for the gibbsitic bauxite. The dissolution kinetic equations of gibbsitic bauxite and pure gibbsite were established, and the corresponding activation energies were calculated to be 99.144 and 115.149 k J/mol, respectively.
文摘Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study.