The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatur...The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.展开更多
Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite cons...Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite considerable research efforts devoted to this area,a systematic summary of these advancements is lacking.This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel,primarily carbides(e.g.,MC,M_(2)C,and M_(3)C)and intermetallic compounds(e.g.,Ni Al,Ni_(3)X,and Fe_(2)Mo).The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes,microstructure of precipitate-strengthened martensite matrix,and mechanical performance.Finally,a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel.This review highlights significant findings,ongoing challenges,and opportunities in the development of ultrahigh-strength martensitic steel.展开更多
Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,i...Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
To study the precipitation mechanism of α-Cr phase in Inconel 718 alloy, the samples after long-time aging at 650 and 677℃ were examined by microstructural observations and chemical phase analysis methods. Combining...To study the precipitation mechanism of α-Cr phase in Inconel 718 alloy, the samples after long-time aging at 650 and 677℃ were examined by microstructural observations and chemical phase analysis methods. Combining the thermodynamics and kinetics calculation results, α-Cr always precipitates in the vicinity of δ phase, because δ phase rejects Cr into the γ-matrix when growing. The selected area diffraction patterns confirm that the crystallographic relationships of α-Cr with 6 phase are (010)d/(1- 10)a.Cr and [100]d/If 11 ]α-Cr- A graphic model is also presented to show the crystallographic relation between α-Cr and δ phases.展开更多
In order to clarify the dynamic process of feldspar dissolution-precipitation and explore the formation mechanism of secondary porosity,six batch reactor experiments were conducted at 200℃and pH=7 measured at room te...In order to clarify the dynamic process of feldspar dissolution-precipitation and explore the formation mechanism of secondary porosity,six batch reactor experiments were conducted at 200℃and pH=7 measured at room temperature.Temporal evolution of fluid chemistry was analyzed with an inductively coupled plasma optical emission spectrometer(ICP-OES).Solid reaction products were retrieved from six batch experiments terminated after 36,180,276,415,766 and 1008 h.Scanning electron microscopy(SEM)revealed dissolution features and significant secondary mineral adhered on the feldspar surface.The process of feldspar dissolution-precipitation proceeded slowly and full equilibrium was not achieved after 1008 h.Saturation indices suggested that the albite and K-feldspar dissolution occurred throughout the experiments.The average dissolution rates for albite and K-feldspar were 2.28×10^-10 and 8.51×10^-11 mol m^-2 s^-1,respectively.Based on the experimental data,the reaction process of alkaline feldspar was simulated and the secondary porosity had increased 0.3%after the experiment.展开更多
Eight dissolution models of calcium apatites(both fluorapatite and hydroxyapatite) in acids were drawn from the published literature,analyzed and discussed.Major limitations and drawbacks of the models were conversed ...Eight dissolution models of calcium apatites(both fluorapatite and hydroxyapatite) in acids were drawn from the published literature,analyzed and discussed.Major limitations and drawbacks of the models were conversed in details.The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general.Therefore,an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids.For this purpose,eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution.The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future.This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data,obtained by various research groups under dissimilar experimental conditions.展开更多
In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid...In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy(AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals(calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid(e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe^(2+) ions that subsequently become oxidized and then precipitate in the form of FeIIIoxyhydroxides. For dolomite and magnesite,dissolution in the presence of pure water(undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution,the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system.展开更多
The dissolution mechanism of marmatite in the presence of Cu^(2+)was intensively studied by experiments and density functional theory(DFT) calculations. Leaching experiments showed that Cu^(2+)accelerated marmatite di...The dissolution mechanism of marmatite in the presence of Cu^(2+)was intensively studied by experiments and density functional theory(DFT) calculations. Leaching experiments showed that Cu^(2+)accelerated marmatite dissolution at high temperatures(above 55 ℃), but the trend was reversed at low temperatures(below 45 ℃), which may be because the reaction mechanism between Cu^(2+)and marmatite changed from surface adsorption to bulk substitution with increasing temperature. The substitution reaction caused more zinc atoms in the marmatite crystal lattice to be released and enhanced the electrochemical reactivity, while the adsorption of copper ions at low temperatures would passivate marmatite, thus inhibiting the reaction process. DFT calculations showed that the energy of the substitution reaction was more negative than that of the adsorption reaction at high temperatures, which further verified the proposed mechanism.展开更多
Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess rein...Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.展开更多
Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.A...Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.As a result,the state-of-the-art for DSC on Mg alloys has been improved with respect to the accessible temperature range,zero-level accuracy and dynamic range.DSC analysis was performed on the example of Mg wrought alloy WE43.Heating DSC experiments on the initial condition T4 and even direct continuous cooling DSC analysis on the kinetics of quench induced precipitation during cooling from solution treatment were possible,covering a dynamic range of 0.01-3 K/s.The DSC findings are discussed with respect to literature knowledge and scanning electron microscopy analysis of the defined heat treatment states.展开更多
Tributyl phosphate(TBP) was employed for the Bi(Ⅲ) extraction from hydrochloric acid medium.The effects of extraction time and material concentration were examined.The replacement mechanism between the anion(Cl^-) an...Tributyl phosphate(TBP) was employed for the Bi(Ⅲ) extraction from hydrochloric acid medium.The effects of extraction time and material concentration were examined.The replacement mechanism between the anion(Cl^-) and TBP was proposed for extraction.The results show the species extracted into the organic phase were found to be mainly BiCl_3·x TBP(x=2 or 3).Thermodynamic parameters of the extraction reaction were obtained from the thermodynamics analysis,which illustrates that higher temperatures show a negative effect on the extraction.Extraction isotherm was obtained with 2.16 mol/L TBP for a typical solution containing 0.1 mol/L of bismuth and 1.0 mol/L of hydrochloric acid.About 98.5 % of bismuth has been extracted from the leaching solution under the optimum condition.Moreover,oxalate was explored as a precipitation stripping agent for BiCl_3·x TBP(x=2 or 3) complexes,by which Bi(Ⅲ) was stripped in the form of Bi_2(C_2O_4)_3·7H_2O.A stripping efficiency of 99.3% was obtained in only one stage at the phase ratio of 1 and TBP also could be recycled.Therefore,the method is an efficient,effective and highly selective approach to extract Bi(Ⅲ) and to recover metal bismuth.展开更多
Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa...Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.展开更多
Carbonate dissolution during the process of burial and evolution by percolating acid fluid was simulated using core plugs to analyze the characteristics and controlling factors of Cambrian carbonate rock dissolution i...Carbonate dissolution during the process of burial and evolution by percolating acid fluid was simulated using core plugs to analyze the characteristics and controlling factors of Cambrian carbonate rock dissolution in the Tarim Basin. The results showed that mineral composition and reservoir space type control selective dissolution. In the carbonate rock strata with high calcite content, the calcite is likely to dissolve first to form secondary dissolution pores; gypsum and anhydrite in the carbonate rock can be dissolved to form mold pores in contemporaneous and penecontemporaneous stages. Porous carbonate has mainly enlargement of matrix pores, with porosity and permeability increasing correspondingly, but not obviously. In comparison, dominant channels for fluid are likely to occur in fractured carbonate or porous carbonate forming cracks under high pressure, resulting in a relative reduction in the dissolution volume, but great increase of permeability. With the rise of temperature and pressure, corrosion ability of acid fluid to carbonate rock increases first and then decreases, there exists an optimum range of temperature and pressure for dissolution, which corresponds to the buried depth of 2 250-3 750 m of the Cambrian. Considering reservoir characteristics of the study area, it is concluded that calcite in the penecontemporaneous period is the material basis for the development of dissolution pore, and carbonate rock were mainly dissolved by early atmospheric fresh water, superimposed and reformed to form high quality reservoirs by multiple acid fluids including deep hydrothermal fluid and acid fluid generated during the process of organic thermal evolution under burial condition.展开更多
The study of the discontinuous precipitation reaction and the lamellar precipitate dissolution in the alloy Cu-In system provoked a considerable benefit and has been the subject of many theoretical and experimental in...The study of the discontinuous precipitation reaction and the lamellar precipitate dissolution in the alloy Cu-In system provoked a considerable benefit and has been the subject of many theoretical and experimental investigations. The aim of this work is to make the evidence on the one hand the effect of the plastic deformation on the mechanism of the discontinuous precipitation reaction such as nucleation, growth and lamellar coarsening and in other hand the effect of temperature on the characteristics and front behavior movement of the opposite reaction (discontinuous dissolution). Different techniques of analysis have been used in this respect such as the optical microscopy, the differential thermal analysis and the microhardness Vickers. The obtained results confirm various works achieved in this field.展开更多
The discontinuous precipitation and dissolution in the alloy Al-Zn system has been the subject of many theoretical and experimental investigations that have contributed to the understanding of the different mechanisms...The discontinuous precipitation and dissolution in the alloy Al-Zn system has been the subject of many theoretical and experimental investigations that have contributed to the understanding of the different mechanisms which control them. However, many questions remain unanswered because of the complexity of the constituted phases which are affected by the speed of the quenched, deformation, the temperature of homogenization and ageing effect. The purpose of this work is to clarify the effect of temperature and deformation on the mechanisms of these two reactions during ageing of Al-15 at.% Zn and Al-30 at.% Zn alloy. The techniques of analysis used in this respect are the optical microscopy, the X-ray diffraction and the hardness Vickers.展开更多
In order to study the control factors and mechanism of oolitic limestone reservoir being corroded by organic acid produced in burial stage,the reactions of acetic acid(pH=3) with oolitic limestone were investigated us...In order to study the control factors and mechanism of oolitic limestone reservoir being corroded by organic acid produced in burial stage,the reactions of acetic acid(pH=3) with oolitic limestone were investigated using the rotating-disk Corrosion Reactor System(CRS).The effects of disk rotational speed, temperature and system pressure were examined. Scanning Electron Microscope attached with Energy Dispersive X-Ray Analyzer(SEM-EDX) was展开更多
Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion an...Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning.展开更多
The dissolution mechanism of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy ...The dissolution mechanism of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The results show that hemimorphite is soluble in NH3-(NH4)2SO4-H2O system and its residue exists in the form of an amorphous SiO2 layer on the hemimorphite surface. The XPS data also indicate that the Si 2p3/2 and O ls spectra of the hemimorphite are broadened and shift to higher binding energies and their binding energies are closer to silica with an increase of total ammonia and time. Solubility of hemimorphite in NH3-(NH4)2SO4-H2O system was measured by means of isothermal solution method at 298.15 K based on the study of the dissolution mechanism of hemimorphite. The results show that the solubility of zinc in solution increases firstly and then decreases with the increase of cr(NH3) (total ammonia concentration) at different NH3/NH4^+ ratios. The solubility of silicon in solution decreases from 0.0334 mol/kg in ct(NH3)-4.1245 mol/kg NH3-(NH4)2SO4-H2O solution to 0.0046 mol/kg in cT(NH3)=7.6035 mol/kg NH3-(NH4)2SO4-H2O solution.展开更多
The global monsoon(GM)comprises two major modes,namely,the solstitial mode and equinoctial asymmetric mode.In this paper,we extend the GM domain from the tropics to the global region and name it the global spring-autu...The global monsoon(GM)comprises two major modes,namely,the solstitial mode and equinoctial asymmetric mode.In this paper,we extend the GM domain from the tropics to the global region and name it the global spring-autumn monsoon(GSAM),which mainly indicates a spring-autumn asymmetrical precipitation pattern exhibiting annual variation.Its distribution and possible formation mechanisms are also analyzed.The GSAM domain is mainly distributed over oceans,located both in the midlatitude and tropical regions of the Pacific and Atlantic.In the GSAM domains of both the Northern and Southern Hemispheres,more precipitation occurs in local autumn than in local spring.The formation mechanisms of GSAM precipitation vary according to the different domains.GSAM precipitation in the tropical domain of the Eastern Hemisphere is influenced by the circulation differences between the onset and retreat periods of the Asian summer monsoon,while tropical cyclone activities cause precipitation over the South China Sea(SCS)and western North Pacific(WNP).GSAM precipitation in the tropical domain of the Western Hemisphere is influenced by the tropical asymmetrical circulation between the Northern and Southern Hemispheres and the variation in the intertropical convergence zone(ITCZ)driven by the intensity of the sea surface temperature cold tongues over the equatorial eastern Pacific and eastern Atlantic.GSAM precipitation in the midlatitude domain is influenced by the differences in water vapor transportation and convergence between spring and autumn.In addition,GSAM precipitation is also affected by extratropical cyclone activities.展开更多
基金Project(51021063)supported by the Creative Research Group of the National Natural Science Foundation of ChinaProject(50831007)supported by the National Natural Science Foundation of China+1 种基金Project(2011CB610401)supported by the National Basic Research Program of ChinaProject(12C1142)supported by the Education Department of Hunan Province,China
文摘The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52071023)financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing,No.FRF-TP-2021-04C1,and 06500135)。
文摘Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite considerable research efforts devoted to this area,a systematic summary of these advancements is lacking.This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel,primarily carbides(e.g.,MC,M_(2)C,and M_(3)C)and intermetallic compounds(e.g.,Ni Al,Ni_(3)X,and Fe_(2)Mo).The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes,microstructure of precipitate-strengthened martensite matrix,and mechanical performance.Finally,a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel.This review highlights significant findings,ongoing challenges,and opportunities in the development of ultrahigh-strength martensitic steel.
基金National Natural Science Foundation of China (52275374, 52205414)Xi’an Jiaotong University Basic Research Funds for Freedom of Exploration and Innovation-Student Programs (xzy022023066)+3 种基金Key Research and Development Projects of Shaanxi Province (2023-YBGY-361)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)State Key Laboratory for Mechanical Behavior of Materials (20212311)Xiaomi Foundation through Xiaomi Young Scholar Program
文摘Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
基金supported by the National Natural Science Foundation of China (No50771011)
文摘To study the precipitation mechanism of α-Cr phase in Inconel 718 alloy, the samples after long-time aging at 650 and 677℃ were examined by microstructural observations and chemical phase analysis methods. Combining the thermodynamics and kinetics calculation results, α-Cr always precipitates in the vicinity of δ phase, because δ phase rejects Cr into the γ-matrix when growing. The selected area diffraction patterns confirm that the crystallographic relationships of α-Cr with 6 phase are (010)d/(1- 10)a.Cr and [100]d/If 11 ]α-Cr- A graphic model is also presented to show the crystallographic relation between α-Cr and δ phases.
基金supported by the National Science and Technology Major Project ‘‘Bohai Bay Basin deep oil and gas geology and reserves increasing direction’’ (No. 2016ZX05006007)the National Natural Fund (Youth) ‘‘Relationship between rich feldspar sandstone reservoirs in feldspar alteration and pyrolysis of hydrocarbons’’ (41602138)
文摘In order to clarify the dynamic process of feldspar dissolution-precipitation and explore the formation mechanism of secondary porosity,six batch reactor experiments were conducted at 200℃and pH=7 measured at room temperature.Temporal evolution of fluid chemistry was analyzed with an inductively coupled plasma optical emission spectrometer(ICP-OES).Solid reaction products were retrieved from six batch experiments terminated after 36,180,276,415,766 and 1008 h.Scanning electron microscopy(SEM)revealed dissolution features and significant secondary mineral adhered on the feldspar surface.The process of feldspar dissolution-precipitation proceeded slowly and full equilibrium was not achieved after 1008 h.Saturation indices suggested that the albite and K-feldspar dissolution occurred throughout the experiments.The average dissolution rates for albite and K-feldspar were 2.28×10^-10 and 8.51×10^-11 mol m^-2 s^-1,respectively.Based on the experimental data,the reaction process of alkaline feldspar was simulated and the secondary porosity had increased 0.3%after the experiment.
文摘Eight dissolution models of calcium apatites(both fluorapatite and hydroxyapatite) in acids were drawn from the published literature,analyzed and discussed.Major limitations and drawbacks of the models were conversed in details.The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general.Therefore,an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids.For this purpose,eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution.The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future.This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data,obtained by various research groups under dissimilar experimental conditions.
基金CVP acknowledges funding through the Marie Curie ITN GrantNo. PITN-GA-2012-317235 (CO2React)The present study received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the ERC Advanced Grant Agreement No. 669972 (Disequilibrium Metamorphism) to AR.
文摘In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy(AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals(calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid(e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe^(2+) ions that subsequently become oxidized and then precipitate in the form of FeIIIoxyhydroxides. For dolomite and magnesite,dissolution in the presence of pure water(undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution,the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system.
基金supported by the National Natural Science Foundation of China(No.52174266)the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming,China(No.CNMRCUKF2109)the Education Foundation of Central South University,China(No.GCY2021376Y)。
文摘The dissolution mechanism of marmatite in the presence of Cu^(2+)was intensively studied by experiments and density functional theory(DFT) calculations. Leaching experiments showed that Cu^(2+)accelerated marmatite dissolution at high temperatures(above 55 ℃), but the trend was reversed at low temperatures(below 45 ℃), which may be because the reaction mechanism between Cu^(2+)and marmatite changed from surface adsorption to bulk substitution with increasing temperature. The substitution reaction caused more zinc atoms in the marmatite crystal lattice to be released and enhanced the electrochemical reactivity, while the adsorption of copper ions at low temperatures would passivate marmatite, thus inhibiting the reaction process. DFT calculations showed that the energy of the substitution reaction was more negative than that of the adsorption reaction at high temperatures, which further verified the proposed mechanism.
基金funded by the Beijing Natural Science Foundation(No.8214060)the National Natural Science Foundation of China(No.42107164)the 2021 Graduate Innovation Fund Project of China University of Geosciences,Beijing(No.ZD2021YC059)。
文摘Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.
基金Financial support by the Federal Ministry of Education and Research (BMBF) within RESPONSE “Partnership for Inno- vation in Implant Technology”(Grant Number 03ZZ0903I ) is gratefully acknowledged.
文摘Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.As a result,the state-of-the-art for DSC on Mg alloys has been improved with respect to the accessible temperature range,zero-level accuracy and dynamic range.DSC analysis was performed on the example of Mg wrought alloy WE43.Heating DSC experiments on the initial condition T4 and even direct continuous cooling DSC analysis on the kinetics of quench induced precipitation during cooling from solution treatment were possible,covering a dynamic range of 0.01-3 K/s.The DSC findings are discussed with respect to literature knowledge and scanning electron microscopy analysis of the defined heat treatment states.
基金Project(2011AA061002)supported by the High-Tech Research and Development Program of ChinaProject(2010SK2010)supported by the Key Program of Science and Technology of Hunan Province,ChinaProject supported by the Hunan Nonferrous Metals Fund,China
文摘Tributyl phosphate(TBP) was employed for the Bi(Ⅲ) extraction from hydrochloric acid medium.The effects of extraction time and material concentration were examined.The replacement mechanism between the anion(Cl^-) and TBP was proposed for extraction.The results show the species extracted into the organic phase were found to be mainly BiCl_3·x TBP(x=2 or 3).Thermodynamic parameters of the extraction reaction were obtained from the thermodynamics analysis,which illustrates that higher temperatures show a negative effect on the extraction.Extraction isotherm was obtained with 2.16 mol/L TBP for a typical solution containing 0.1 mol/L of bismuth and 1.0 mol/L of hydrochloric acid.About 98.5 % of bismuth has been extracted from the leaching solution under the optimum condition.Moreover,oxalate was explored as a precipitation stripping agent for BiCl_3·x TBP(x=2 or 3) complexes,by which Bi(Ⅲ) was stripped in the form of Bi_2(C_2O_4)_3·7H_2O.A stripping efficiency of 99.3% was obtained in only one stage at the phase ratio of 1 and TBP also could be recycled.Therefore,the method is an efficient,effective and highly selective approach to extract Bi(Ⅲ) and to recover metal bismuth.
基金The National Natural Science Foundation of China under contract No.42202157the China National Offshore Oil Corporation Co.,Ltd.Major Production and Scientific Research Program under contract No.2019KT-SC-22。
文摘Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.
基金Supported by the China National Science and Technology Major Project(2016ZX05005-004-006)
文摘Carbonate dissolution during the process of burial and evolution by percolating acid fluid was simulated using core plugs to analyze the characteristics and controlling factors of Cambrian carbonate rock dissolution in the Tarim Basin. The results showed that mineral composition and reservoir space type control selective dissolution. In the carbonate rock strata with high calcite content, the calcite is likely to dissolve first to form secondary dissolution pores; gypsum and anhydrite in the carbonate rock can be dissolved to form mold pores in contemporaneous and penecontemporaneous stages. Porous carbonate has mainly enlargement of matrix pores, with porosity and permeability increasing correspondingly, but not obviously. In comparison, dominant channels for fluid are likely to occur in fractured carbonate or porous carbonate forming cracks under high pressure, resulting in a relative reduction in the dissolution volume, but great increase of permeability. With the rise of temperature and pressure, corrosion ability of acid fluid to carbonate rock increases first and then decreases, there exists an optimum range of temperature and pressure for dissolution, which corresponds to the buried depth of 2 250-3 750 m of the Cambrian. Considering reservoir characteristics of the study area, it is concluded that calcite in the penecontemporaneous period is the material basis for the development of dissolution pore, and carbonate rock were mainly dissolved by early atmospheric fresh water, superimposed and reformed to form high quality reservoirs by multiple acid fluids including deep hydrothermal fluid and acid fluid generated during the process of organic thermal evolution under burial condition.
文摘The study of the discontinuous precipitation reaction and the lamellar precipitate dissolution in the alloy Cu-In system provoked a considerable benefit and has been the subject of many theoretical and experimental investigations. The aim of this work is to make the evidence on the one hand the effect of the plastic deformation on the mechanism of the discontinuous precipitation reaction such as nucleation, growth and lamellar coarsening and in other hand the effect of temperature on the characteristics and front behavior movement of the opposite reaction (discontinuous dissolution). Different techniques of analysis have been used in this respect such as the optical microscopy, the differential thermal analysis and the microhardness Vickers. The obtained results confirm various works achieved in this field.
文摘The discontinuous precipitation and dissolution in the alloy Al-Zn system has been the subject of many theoretical and experimental investigations that have contributed to the understanding of the different mechanisms which control them. However, many questions remain unanswered because of the complexity of the constituted phases which are affected by the speed of the quenched, deformation, the temperature of homogenization and ageing effect. The purpose of this work is to clarify the effect of temperature and deformation on the mechanisms of these two reactions during ageing of Al-15 at.% Zn and Al-30 at.% Zn alloy. The techniques of analysis used in this respect are the optical microscopy, the X-ray diffraction and the hardness Vickers.
文摘In order to study the control factors and mechanism of oolitic limestone reservoir being corroded by organic acid produced in burial stage,the reactions of acetic acid(pH=3) with oolitic limestone were investigated using the rotating-disk Corrosion Reactor System(CRS).The effects of disk rotational speed, temperature and system pressure were examined. Scanning Electron Microscope attached with Energy Dispersive X-Ray Analyzer(SEM-EDX) was
文摘Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning.
基金Projects(511340071) supported by the National Natural Science Foundation of China
文摘The dissolution mechanism of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The results show that hemimorphite is soluble in NH3-(NH4)2SO4-H2O system and its residue exists in the form of an amorphous SiO2 layer on the hemimorphite surface. The XPS data also indicate that the Si 2p3/2 and O ls spectra of the hemimorphite are broadened and shift to higher binding energies and their binding energies are closer to silica with an increase of total ammonia and time. Solubility of hemimorphite in NH3-(NH4)2SO4-H2O system was measured by means of isothermal solution method at 298.15 K based on the study of the dissolution mechanism of hemimorphite. The results show that the solubility of zinc in solution increases firstly and then decreases with the increase of cr(NH3) (total ammonia concentration) at different NH3/NH4^+ ratios. The solubility of silicon in solution decreases from 0.0334 mol/kg in ct(NH3)-4.1245 mol/kg NH3-(NH4)2SO4-H2O solution to 0.0046 mol/kg in cT(NH3)=7.6035 mol/kg NH3-(NH4)2SO4-H2O solution.
基金The work was supported by the Global Change Research Program of China(No.2019YFA0607004)the National Natural Science Foundation of China(Nos.41575067,41975061).
文摘The global monsoon(GM)comprises two major modes,namely,the solstitial mode and equinoctial asymmetric mode.In this paper,we extend the GM domain from the tropics to the global region and name it the global spring-autumn monsoon(GSAM),which mainly indicates a spring-autumn asymmetrical precipitation pattern exhibiting annual variation.Its distribution and possible formation mechanisms are also analyzed.The GSAM domain is mainly distributed over oceans,located both in the midlatitude and tropical regions of the Pacific and Atlantic.In the GSAM domains of both the Northern and Southern Hemispheres,more precipitation occurs in local autumn than in local spring.The formation mechanisms of GSAM precipitation vary according to the different domains.GSAM precipitation in the tropical domain of the Eastern Hemisphere is influenced by the circulation differences between the onset and retreat periods of the Asian summer monsoon,while tropical cyclone activities cause precipitation over the South China Sea(SCS)and western North Pacific(WNP).GSAM precipitation in the tropical domain of the Western Hemisphere is influenced by the tropical asymmetrical circulation between the Northern and Southern Hemispheres and the variation in the intertropical convergence zone(ITCZ)driven by the intensity of the sea surface temperature cold tongues over the equatorial eastern Pacific and eastern Atlantic.GSAM precipitation in the midlatitude domain is influenced by the differences in water vapor transportation and convergence between spring and autumn.In addition,GSAM precipitation is also affected by extratropical cyclone activities.