Dissolved gas analysis is the most widely used diagnostic test in power transformers. The aim of this paper is to introduce the dissolved gas analysis (DGA) methods able to diagnose the transformer conditions. The fau...Dissolved gas analysis is the most widely used diagnostic test in power transformers. The aim of this paper is to introduce the dissolved gas analysis (DGA) methods able to diagnose the transformer conditions. The faults cause the transformer oil, pressboard, and other insulating materials to decompose and generate gases, some of which dissolve in the oil. The results of DGA must be accurate if faults are to be diagnosed reliably. There are different established methods used in industry for interpreting DGA results. We will compare the result of IEEE Key Gas Methods and Rogers’ Ratios. The transformer conditions are evaluated by the Key Gas Method with total combustible gas method (TCGM) and then verified by the Rogers’ Ratios. As result, the aging pattern and trend of the power transformer deterioration can be determined. The 30 sample data from IEEE with known faults and dissolved gas concentrations were used as the basis of comparison.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
By using the ultraviolet absorption spectrum,the fluorescence spectrum and three dimensional fluorescence spectra,the composition of dissolved organic matter(DOM) and the humification degree,etc.in the sediment of hyd...By using the ultraviolet absorption spectrum,the fluorescence spectrum and three dimensional fluorescence spectra,the composition of dissolved organic matter(DOM) and the humification degree,etc.in the sediment of hydro-fluctuation belt(Yunyang part) were analyzed.The relationship between the test parameters and the pollution degree in the region was discussed.The research results of UV spectrum data E3/E4 showed that in 4 sampling sites which included Huangshi Town,Gaoyang Town,Shuangjiang Town and Quma Town,the humification degree in the sediment of hydro-fluctuation belt in Shuangjiang Town sampling site was lower,and the aromaticity was smaller.Moreover,the effect of human factor was comparatively smaller.The fluorescence index value which represented the source of humus in DOM was 1.62-1.88.It showed that the biological and terrestrial source both existed.Three dimensional spectra results showed that the pollution degrees in 4 sampling sites were all smaller,and some prevention measures should be taken early.展开更多
Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of sa...Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.展开更多
Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus...Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus determinationmethods presently. The compounds used for the phosphorus recovery test were categorized into three groups accordingto their chemical structure. It was found that low power UV irradiation can decompose POC or PC bonds efficientlybut may be inefficient for POP bonds. Heating-bath in acid condition is useful for decomposing POP bonds. Usingthe continuous flow analysis system (Auto-analyzer II), UV digestion and heating-bath, series experiments were carriedout based on the above analysis. Eleven model compounds were employed for the phosphorus recovery test and thefactors influencing the decomposition efficiency of dissolved compounds containing phosphorus were clarified. Finally,the optimal design for determination of dissolved total phosphorus in seawater based on the routine continuous flowanalysis system was presented. For the organic mono-phosphate, the recovery is more than 90% and a recovery of33%~51% was obtained for inorganic or organic polyphosphates. Up to now, this is the highest decompositionefficiency for dissolved phosphorus based on the continuous flow analysis system.展开更多
Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The ana...Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The analysis of fluorescence emission, excitation, synchronous or excitation-emission matrix (EEM) have been used to identify the main source or probable contribution of dissolved compounds, such as humic acids (HA), fulvic acids (FA) and dissolved organic carbon (DOC) from sewage, but does not quantify. Fluorescence emission is a powerful technique to detect and qualify organic dissolved compounds but fails in quantitative aspects. In this work, we propose an in situ method for direct determination of DOC using synchronous fluorescence spectra with independent component analysis (ICA). Well known standard solutions were used for method development and validation. In this work, we show that it is possible to predict the number of independent contributions using an unsupervised method based on iterative Principal Component Analysis and Independent Component Analysis (PCA-ICA) approach over combined matrix results. Within these results it’s also possible to see that with a very small amount of independent components it is possible to describe environmental samples of HA, FA and primary productivity (PP).展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
During the storage of water and the initial running of a reservoir, part of the dissolved nutrients released from the soil in water will effect water quality. Taking Qinglongshan Reservoir as an example, estimating th...During the storage of water and the initial running of a reservoir, part of the dissolved nutrients released from the soil in water will effect water quality. Taking Qinglongshan Reservoir as an example, estimating the value of the contribution of dissolved nutrients to the water quality and analyzing the trend or level of the dissolved nutrients effecting on the water quality under the soil nutrient inquiring, the soil nutrient monitoring, and the dissolving experiment of nutrients released from soil, also according to the capacity curve of Qinglongshan Reservoir.展开更多
The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to invest...The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.展开更多
To overcome the disadvantages of conventional DGA (dissolved gas-in-oil)analysis using gas chromatography and other electrochemical sensors, initial researches werecompleted to realize on-line monitoring of dissolved ...To overcome the disadvantages of conventional DGA (dissolved gas-in-oil)analysis using gas chromatography and other electrochemical sensors, initial researches werecompleted to realize on-line monitoring of dissolved gas-in-oil of power transformers using FTIR(Fourier Transform InfraRed) spectroscopy. Gas cell method is used to determine the characteristicabsorption peaks of each diagnostic gas; simple and novel devices and procedures were designed inorder to get measurable samples and spectra of mixed diagnostic gases with known concentration aretaken using long optical path gas cell. The range of wavelength is estimated to be 3.0-13.9 mum fromexperimental spectra data. Hence the corresponding sampling frequency range should be in 536-4288Hz and usable optical materials are suggested. It is concluded that a resolution of 10 cm^(-1) maywell satisfy the monitoring of all diagnostic gases and water content except hydrogen, and thelowest detection limit may be as low as 2Xl0^(-8) to acetylene with a 2.4-meter-long optical length.展开更多
Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type...Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability.展开更多
The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH--on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results s...The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH--on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results show an indistinct relationship between these four factors and the ORE but they did impact the ORP. Common mathematical methods were not applicable for describing the relationship. Therefore, a grey relational analysis (GRA) method was developed. The degrees of correlation were calculated according to GILA and the values of T, pH, DO and S were 0.744, 0.710, 0.692 and 0.690, respectively. From these values, the relations of these factors to the ORP could be described and evaluated, and those of T and pH were relatively major. In general, ORP is influenced by the synergic effect of T, DO, pH and S, with no single factor having an outstanding role.展开更多
Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achie...Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang(Yangtze)River basin,water samples from four natural lakes(Xiandao,Baoan,Daye,and Qingshan)in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed.The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis.The results show that:(1)two humic-like components(C1 and C2)and two protein-like substances(C3 and C4)of DOM were identified in all waterbodies;(2)C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation.C4 was widely present in the Changjiang River basin and its formation was related to microbial activity,rather than algal blooms or seasons.Influenced by the water mixing,the protein-like components were more likely to be transformed by microorganism,whereas humic-like components were more easily to be photobleached;(3)the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels.With respect to protein-like components,only C3 showed changes along the eutrophication gradients;(4)DOM showed a high affinity with permanganate index(COD Mn)and chlorophyll a(chl a)while the relationship was variable with phosphorus.This study helps us systematically understand the DOM characteristics,microbial activities,and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.展开更多
Jellyfish blooms have increased worldwide, and the outbreaks of jellyfish population not only affect the food web structures via voracious predation but also play an important role in the dynamics of nutrients and oxy...Jellyfish blooms have increased worldwide, and the outbreaks of jellyfish population not only affect the food web structures via voracious predation but also play an important role in the dynamics of nutrients and oxygen in planktonic food webs. However, it remains unclear whether specific carbon compounds released through jellyfish metabolic processes have the potential to shape bacterial community composition. Therefore, in this study, we aimed to investigate the compositional succession of the bacterioplankton community in response to the dissolved organic matter (DOM) released by the live Scyphomedusae Cyanea lamarckii and Chrysaora hysoscella collected from Helgoland Roads of the North Sea. The bacterial community was significantly stimulated by the DOM released form live jellyfish and different dominant phylotypes were observed for these two Scyphomedusae species. Furthermore, the bacterial community structures in the different DOM sources, jellyfish-incubated media, Kabeltonne seawater, and artificial seawater (DOM-free) were significantly different, as revealed by automated ribosomal intergenic spacer analysis fingerprints. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) revealed a rapid species-specific shift in bacterial community composition. Gammaproteobacteria dominated the community instead of the Bacteroidetes community for C. lamarckii, whereas Gammaproteobacteria and Bacteroidetes dominated the community for C. hysoscella. The significant differences in the bacterial community composition and succession indicate that the components of the DOM released by jellyfish might differ with jellyfish species.展开更多
Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquati...Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.展开更多
Chromophoric dissolved organic matter(CDOM)is a key component of organic matter that contributes to the ecological functioning of lakes.The lakes in Taihu Lake Basin play an important role in maintaining regional ecol...Chromophoric dissolved organic matter(CDOM)is a key component of organic matter that contributes to the ecological functioning of lakes.The lakes in Taihu Lake Basin play an important role in maintaining regional ecological stabilities;however,the optical characteristics of the CDOM in the upstream and downstream lakes in this basin have not yet been systematically studied.Here,the optical characteristics of CDOM in ten lakes of upstream and downstream of the Taihu Lake Basin were studied using UV-Visible and excitation-emission matrix spectroscopies.Three different fluorophores consisting of two humic-like components(C1,C2)and one protein-like component(C3)were identified by parallel factor analysis.Soil or surface erosion was responsible for the higher abund-ance of C1 in the upstream lakes,and increased biological activities accounted for the higher abundance of C3 in the downstream lakes.Rainfall erosion in the wet season led to an increase in CDOM.We also found that the photodegradation and flocculation degree,which played a significant role in reducing CDOM,were higher in downstream lakes than in upstream lakes.Optical analysis of CDOM provides a promising method for monitoring water qualities(e.g.,total phosphorus and potassium permanganate index)in each lake.Re-ductions in soil or surface erosion in the upstream are needed to improve water quality.展开更多
Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of...Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (C1), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3) components. During the aerated grit chamber and primary sedimentation tank stage, there was only a slight decrease in fluorescence intensity and the absorption coefficient at 350 nm (a 350 ). During the second aeration stage, high concentration of protein-like and short-wavelength-excited humic-like components were significantly degraded accompanied by significant loss of DOC (80%) and a 350 (30%), indicating that C1 and C2 were the dominant constituents of sewage DOM. As a result, long-wavelength- excited C4 and C5 became the dominant humic-like components and the DOM molecular size inferred from the variation of spectral slope S (300–650 nm) and specific absorption (a 280 /DOC) increased. Combination use of F max of C1 and the ratio of C1/C5, or a 350 may provide a quantitative indication for the relative amount of raw or treated sewage in aquatic environment.展开更多
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t...Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.展开更多
Dedicated experiments are designed to collect the infrared spectra of dissolved gas-in-oil of power transformers. Spectra of diagnostic gases are collected by 3 different laboratorial FTIR spectrometers using 3 differ...Dedicated experiments are designed to collect the infrared spectra of dissolved gas-in-oil of power transformers. Spectra of diagnostic gases are collected by 3 different laboratorial FTIR spectrometers using 3 different gas cells with various sets of equipment parameters. A formula is deduced to calculate the shortest optical length to detect a specific concentration according to measurements on gases with known concentrations near to the minimum detection limit. Collected spectra and calculated results suggested that the optimum optical length of the gas cell should be 150 mm to realize on-line monitoring of diagnostic gases within the required concentration range. At the end, an economic novel design of the gas cell is proposed based on the optimum length.展开更多
Samples of chromophoric dissolved organic matter (CDOM) in the East China Sea in autumn (October in 2011) were analyzed by excitation emission matrix (EEM) fluorescence spectroscopy combined with parallel factor...Samples of chromophoric dissolved organic matter (CDOM) in the East China Sea in autumn (October in 2011) were analyzed by excitation emission matrix (EEM) fluorescence spectroscopy combined with parallel factor analysis (PARAFAC). Three terrestrial humic-like components (C1, C2 and C3) and one protein-like component (C4) were identified. Based on spatial dis- tributions, as well as relationships with salinity, the following assignments were made. The three humic-like components (CI, C2 and C3) showed conservative mixing behavior and came mainly from riverine input. The protein-like component (C4) was considered a combination of autochthonous production and terrestrial inputs and a biologically labile component. Path analysis of samples from the middle and bottom layers revealed that the causal effects on C1 were -78.46% for salinity, and -21.54% for apparent oxygen utilization (AOU); those on C2 were -76.43% for salinity, and -23.57% for AOU; those on C3 were -70.49% for salinity, 7.01% for Chl-a, and -22.50% for AOU; those on C4 were -55.54% for salinity, 14.6% for Chl-a, and -29.86% for AOU in middle layer; and those on C4 were -57.37% for salinity, 29.02% for Chl-a, and -13.61% for AOU in bottom layer. Results indicated that CDOM in tile East China Sea was mainly affected by terrestrial inputs, and microbial ac- tivities also played a key role in biogeochemical processes of CDOM. The application of the EEM-PARAFAC model present- ed a unique opportunity to observe compositional changes in CDOM in the East China Sea. In addition, the humification index (HIX) suggested that CDOM from the East China Sea was less stable and stayed shorter in the environment.展开更多
文摘Dissolved gas analysis is the most widely used diagnostic test in power transformers. The aim of this paper is to introduce the dissolved gas analysis (DGA) methods able to diagnose the transformer conditions. The faults cause the transformer oil, pressboard, and other insulating materials to decompose and generate gases, some of which dissolve in the oil. The results of DGA must be accurate if faults are to be diagnosed reliably. There are different established methods used in industry for interpreting DGA results. We will compare the result of IEEE Key Gas Methods and Rogers’ Ratios. The transformer conditions are evaluated by the Key Gas Method with total combustible gas method (TCGM) and then verified by the Rogers’ Ratios. As result, the aging pattern and trend of the power transformer deterioration can be determined. The 30 sample data from IEEE with known faults and dissolved gas concentrations were used as the basis of comparison.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
基金Supported by Talent Introduction Talent Plan of Chongqing ThreeGorge University(2007-SXXYRC-006)Accented Term of ChongqingThree Gorge University(10ZD-14)+1 种基金Special Term of National Water Body Pollution Control and Treatment Major Project(2009ZX07104-003-02)Special Term of National Science and Technology Supportm Plan Major Project(2008BAD98B04)
文摘By using the ultraviolet absorption spectrum,the fluorescence spectrum and three dimensional fluorescence spectra,the composition of dissolved organic matter(DOM) and the humification degree,etc.in the sediment of hydro-fluctuation belt(Yunyang part) were analyzed.The relationship between the test parameters and the pollution degree in the region was discussed.The research results of UV spectrum data E3/E4 showed that in 4 sampling sites which included Huangshi Town,Gaoyang Town,Shuangjiang Town and Quma Town,the humification degree in the sediment of hydro-fluctuation belt in Shuangjiang Town sampling site was lower,and the aromaticity was smaller.Moreover,the effect of human factor was comparatively smaller.The fluorescence index value which represented the source of humus in DOM was 1.62-1.88.It showed that the biological and terrestrial source both existed.Three dimensional spectra results showed that the pollution degrees in 4 sampling sites were all smaller,and some prevention measures should be taken early.
基金supported by the National High-tech Research Project ("863" Project) of China under contract Nos 2003AA635180 and 2006AA09Z167the Public Welfare Project of Marine Science Research under contract No 200705011the open project of Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms,SOA, China under contract No200811
文摘Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.
基金The research was supported by the National Basic Research Program(“973”Program)of China under contract No.2002CB412405the Key Science and Technology Plan of the Ministry of Education of China under contract No.[2000]156-00079the Joint Sino-German Project under contract No.03F0189A.
文摘Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus determinationmethods presently. The compounds used for the phosphorus recovery test were categorized into three groups accordingto their chemical structure. It was found that low power UV irradiation can decompose POC or PC bonds efficientlybut may be inefficient for POP bonds. Heating-bath in acid condition is useful for decomposing POP bonds. Usingthe continuous flow analysis system (Auto-analyzer II), UV digestion and heating-bath, series experiments were carriedout based on the above analysis. Eleven model compounds were employed for the phosphorus recovery test and thefactors influencing the decomposition efficiency of dissolved compounds containing phosphorus were clarified. Finally,the optimal design for determination of dissolved total phosphorus in seawater based on the routine continuous flowanalysis system was presented. For the organic mono-phosphate, the recovery is more than 90% and a recovery of33%~51% was obtained for inorganic or organic polyphosphates. Up to now, this is the highest decompositionefficiency for dissolved phosphorus based on the continuous flow analysis system.
文摘Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The analysis of fluorescence emission, excitation, synchronous or excitation-emission matrix (EEM) have been used to identify the main source or probable contribution of dissolved compounds, such as humic acids (HA), fulvic acids (FA) and dissolved organic carbon (DOC) from sewage, but does not quantify. Fluorescence emission is a powerful technique to detect and qualify organic dissolved compounds but fails in quantitative aspects. In this work, we propose an in situ method for direct determination of DOC using synchronous fluorescence spectra with independent component analysis (ICA). Well known standard solutions were used for method development and validation. In this work, we show that it is possible to predict the number of independent contributions using an unsupervised method based on iterative Principal Component Analysis and Independent Component Analysis (PCA-ICA) approach over combined matrix results. Within these results it’s also possible to see that with a very small amount of independent components it is possible to describe environmental samples of HA, FA and primary productivity (PP).
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
文摘During the storage of water and the initial running of a reservoir, part of the dissolved nutrients released from the soil in water will effect water quality. Taking Qinglongshan Reservoir as an example, estimating the value of the contribution of dissolved nutrients to the water quality and analyzing the trend or level of the dissolved nutrients effecting on the water quality under the soil nutrient inquiring, the soil nutrient monitoring, and the dissolving experiment of nutrients released from soil, also according to the capacity curve of Qinglongshan Reservoir.
基金funded by the National Natural Science Foundation of China(Grant nos.42276255 and 41976227)project“Impact and Response of Antarctic Seas to Climate Change,IRASCC 2020-2022”(Grant nos.01-01-02A and 02-02-05).
文摘The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.
文摘To overcome the disadvantages of conventional DGA (dissolved gas-in-oil)analysis using gas chromatography and other electrochemical sensors, initial researches werecompleted to realize on-line monitoring of dissolved gas-in-oil of power transformers using FTIR(Fourier Transform InfraRed) spectroscopy. Gas cell method is used to determine the characteristicabsorption peaks of each diagnostic gas; simple and novel devices and procedures were designed inorder to get measurable samples and spectra of mixed diagnostic gases with known concentration aretaken using long optical path gas cell. The range of wavelength is estimated to be 3.0-13.9 mum fromexperimental spectra data. Hence the corresponding sampling frequency range should be in 536-4288Hz and usable optical materials are suggested. It is concluded that a resolution of 10 cm^(-1) maywell satisfy the monitoring of all diagnostic gases and water content except hydrogen, and thelowest detection limit may be as low as 2Xl0^(-8) to acetylene with a 2.4-meter-long optical length.
文摘Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability.
基金Supporte by the Knowledge Innovation Project of the Chinese Academy of Sciences (No KZCX2-YW-210)National Key Technology Research and Development Program (No2007BAB27B04)the High Technology Research and Development Program of China (No 2001AA635080)
文摘The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH--on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results show an indistinct relationship between these four factors and the ORE but they did impact the ORP. Common mathematical methods were not applicable for describing the relationship. Therefore, a grey relational analysis (GRA) method was developed. The degrees of correlation were calculated according to GILA and the values of T, pH, DO and S were 0.744, 0.710, 0.692 and 0.690, respectively. From these values, the relations of these factors to the ORP could be described and evaluated, and those of T and pH were relatively major. In general, ORP is influenced by the synergic effect of T, DO, pH and S, with no single factor having an outstanding role.
基金Supported by the Science and Technology Research Project of Education Department of Hubei Province(Nos.Q20182502,D20152503)the Innovation Team Project of HBNU of Heavy Metal Pollution Mechanism and Ecological Restoration for Lake-Catchment System,Youth Project of Hubei Natural Science Foundation(No.2018CFB321)the Hubei Undergraduate Training Program for Innovation and Entrepreneurship(No.S201910513001)。
文摘Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang(Yangtze)River basin,water samples from four natural lakes(Xiandao,Baoan,Daye,and Qingshan)in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed.The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis.The results show that:(1)two humic-like components(C1 and C2)and two protein-like substances(C3 and C4)of DOM were identified in all waterbodies;(2)C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation.C4 was widely present in the Changjiang River basin and its formation was related to microbial activity,rather than algal blooms or seasons.Influenced by the water mixing,the protein-like components were more likely to be transformed by microorganism,whereas humic-like components were more easily to be photobleached;(3)the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels.With respect to protein-like components,only C3 showed changes along the eutrophication gradients;(4)DOM showed a high affinity with permanganate index(COD Mn)and chlorophyll a(chl a)while the relationship was variable with phosphorus.This study helps us systematically understand the DOM characteristics,microbial activities,and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.
基金Project at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (Germany)the funding from the China Scholarship Council+1 种基金Jutta Niggemann and Thorsten Dittmar (ICBM COU Oldenburg) who supported the preparation of the DOM free seawater strongly with material and technical supportthe crew of the AADE research vessel for providing samples as well as the entire team of the AWI Food Web Project
文摘Jellyfish blooms have increased worldwide, and the outbreaks of jellyfish population not only affect the food web structures via voracious predation but also play an important role in the dynamics of nutrients and oxygen in planktonic food webs. However, it remains unclear whether specific carbon compounds released through jellyfish metabolic processes have the potential to shape bacterial community composition. Therefore, in this study, we aimed to investigate the compositional succession of the bacterioplankton community in response to the dissolved organic matter (DOM) released by the live Scyphomedusae Cyanea lamarckii and Chrysaora hysoscella collected from Helgoland Roads of the North Sea. The bacterial community was significantly stimulated by the DOM released form live jellyfish and different dominant phylotypes were observed for these two Scyphomedusae species. Furthermore, the bacterial community structures in the different DOM sources, jellyfish-incubated media, Kabeltonne seawater, and artificial seawater (DOM-free) were significantly different, as revealed by automated ribosomal intergenic spacer analysis fingerprints. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) revealed a rapid species-specific shift in bacterial community composition. Gammaproteobacteria dominated the community instead of the Bacteroidetes community for C. lamarckii, whereas Gammaproteobacteria and Bacteroidetes dominated the community for C. hysoscella. The significant differences in the bacterial community composition and succession indicate that the components of the DOM released by jellyfish might differ with jellyfish species.
基金Supported by the Natural Science Foundation of Qinghai Province(Nos.2020-ZJ-940Q,2014-ZJ-937Q)the West Light Foundation of the Chinese Academy of Sciences(No.E010GC09)the Youth Innovation Promotion Association CAS(No.E010GC15)。
文摘Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.
基金Under the auspices of the Science and Technology Research Project of Education Department of Hubei Province(No.Q20182502,No.D20152503)Innovation Team Project of HBNU of Heavy Metal Pollution Mechanism and Ecological Restoration for Lake-Catchment System(No.2019CZ014)。
文摘Chromophoric dissolved organic matter(CDOM)is a key component of organic matter that contributes to the ecological functioning of lakes.The lakes in Taihu Lake Basin play an important role in maintaining regional ecological stabilities;however,the optical characteristics of the CDOM in the upstream and downstream lakes in this basin have not yet been systematically studied.Here,the optical characteristics of CDOM in ten lakes of upstream and downstream of the Taihu Lake Basin were studied using UV-Visible and excitation-emission matrix spectroscopies.Three different fluorophores consisting of two humic-like components(C1,C2)and one protein-like component(C3)were identified by parallel factor analysis.Soil or surface erosion was responsible for the higher abund-ance of C1 in the upstream lakes,and increased biological activities accounted for the higher abundance of C3 in the downstream lakes.Rainfall erosion in the wet season led to an increase in CDOM.We also found that the photodegradation and flocculation degree,which played a significant role in reducing CDOM,were higher in downstream lakes than in upstream lakes.Optical analysis of CDOM provides a promising method for monitoring water qualities(e.g.,total phosphorus and potassium permanganate index)in each lake.Re-ductions in soil or surface erosion in the upstream are needed to improve water quality.
基金supported by the National Natural Science Foundation of China(No.40776041,40676046)the National High Technology Research and Development Program of China(No.2007AA091704)the Program for New Century Excellent Talents in Fujian Province University
文摘Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (C1), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3) components. During the aerated grit chamber and primary sedimentation tank stage, there was only a slight decrease in fluorescence intensity and the absorption coefficient at 350 nm (a 350 ). During the second aeration stage, high concentration of protein-like and short-wavelength-excited humic-like components were significantly degraded accompanied by significant loss of DOC (80%) and a 350 (30%), indicating that C1 and C2 were the dominant constituents of sewage DOM. As a result, long-wavelength- excited C4 and C5 became the dominant humic-like components and the DOM molecular size inferred from the variation of spectral slope S (300–650 nm) and specific absorption (a 280 /DOC) increased. Combination use of F max of C1 and the ratio of C1/C5, or a 350 may provide a quantitative indication for the relative amount of raw or treated sewage in aquatic environment.
基金financially supported by the National Natural Science Foundation of China(No.41573130)BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates(No.BNUXKJC1802)
文摘Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.
文摘Dedicated experiments are designed to collect the infrared spectra of dissolved gas-in-oil of power transformers. Spectra of diagnostic gases are collected by 3 different laboratorial FTIR spectrometers using 3 different gas cells with various sets of equipment parameters. A formula is deduced to calculate the shortest optical length to detect a specific concentration according to measurements on gases with known concentrations near to the minimum detection limit. Collected spectra and calculated results suggested that the optimum optical length of the gas cell should be 150 mm to realize on-line monitoring of diagnostic gases within the required concentration range. At the end, an economic novel design of the gas cell is proposed based on the optimum length.
基金supported by the National Basic Research Program of China(973 program,2010CB428701)the National Natural Science Foundation of China(41176063)
文摘Samples of chromophoric dissolved organic matter (CDOM) in the East China Sea in autumn (October in 2011) were analyzed by excitation emission matrix (EEM) fluorescence spectroscopy combined with parallel factor analysis (PARAFAC). Three terrestrial humic-like components (C1, C2 and C3) and one protein-like component (C4) were identified. Based on spatial dis- tributions, as well as relationships with salinity, the following assignments were made. The three humic-like components (CI, C2 and C3) showed conservative mixing behavior and came mainly from riverine input. The protein-like component (C4) was considered a combination of autochthonous production and terrestrial inputs and a biologically labile component. Path analysis of samples from the middle and bottom layers revealed that the causal effects on C1 were -78.46% for salinity, and -21.54% for apparent oxygen utilization (AOU); those on C2 were -76.43% for salinity, and -23.57% for AOU; those on C3 were -70.49% for salinity, 7.01% for Chl-a, and -22.50% for AOU; those on C4 were -55.54% for salinity, 14.6% for Chl-a, and -29.86% for AOU in middle layer; and those on C4 were -57.37% for salinity, 29.02% for Chl-a, and -13.61% for AOU in bottom layer. Results indicated that CDOM in tile East China Sea was mainly affected by terrestrial inputs, and microbial ac- tivities also played a key role in biogeochemical processes of CDOM. The application of the EEM-PARAFAC model present- ed a unique opportunity to observe compositional changes in CDOM in the East China Sea. In addition, the humification index (HIX) suggested that CDOM from the East China Sea was less stable and stayed shorter in the environment.