When image guided missile adopts guided search and common search law to search ground targets, under some conditions the movement of image on the monitor screen will be dissymmetrical, which is harmful for shooter to ...When image guided missile adopts guided search and common search law to search ground targets, under some conditions the movement of image on the monitor screen will be dissymmetrical, which is harmful for shooter to acquire and capture targets. To remove the dissymmetry of the image movement, such common search laws as parallel search law, "X" style search law, search law of one-dimension visual effect and cone search law are improved and designed again. Simulation results show that the dissymmetry can be removed by adopting all the above four improved search laws, but the search track of improved cone search law has serious transmutation compared with the original search track. The other three improved search laws have little transmutation of the search track, and they all can keep the main characters of the original search law. Study resuits are helpful for image guided missile in adopting guided search to choose appropriate search law.展开更多
The dissymmetric flow phenomenon exists in a symmetric multistrand tundish. It was studied by the physical simulation experiment. The fundamental flow characteristic of dissymmetry was analyzed. The asymmetry of the f...The dissymmetric flow phenomenon exists in a symmetric multistrand tundish. It was studied by the physical simulation experiment. The fundamental flow characteristic of dissymmetry was analyzed. The asymmetry of the flow field, the temperature field, and the inclusions distribution without flow-control devices (FCDs) were compared with those with FCDs. It is proved that the asymmetry of the flow and temperature field along the outlets at the long range is more obvious. The symmetric FCDs installation has a slight effect on the dissymmetric temperature field, simultaneously, the symmetry of the average residence time and the fluid flow pattern has improved, and the fluid flow in the tundish has been more reasonable. In case of a symmetric multistrand tundish having a large volume, the influence of the dissymmetric phenomenon should be considered and the flow behaviors in the whole tundish should be studied completely.展开更多
The difference of regional economy comes from capital dissymmetry, technology dissymmetry, manpower dissymmetry and the information dissymmetry. In the knowledge-based economic ages, globalization and information exce...The difference of regional economy comes from capital dissymmetry, technology dissymmetry, manpower dissymmetry and the information dissymmetry. In the knowledge-based economic ages, globalization and information exceed any age of the history. It provides the new terrace for the balanced development of global economy. The flows of capital and technology improve the regional dissymmetry of production factor. By establishing circulating channels, the flows of the production factor will be enlarged. This will raise the distribution efficiency of global resources and lead to the global economic growth.展开更多
The modulation of circularly polarized luminescence(CPL) has become an increasingly prominent area of research. In this study,we propose a unique “one-excitation-to-three-emissions” CPL system through the co-assembl...The modulation of circularly polarized luminescence(CPL) has become an increasingly prominent area of research. In this study,we propose a unique “one-excitation-to-three-emissions” CPL system through the co-assembly of an upconversion system,incorporating one sensitizer(Pt(II) mesotetraphenyl tetrabenzoporphyrine, Pt TPBP) and two annihilators(R/S-DPA and R/SBDP) within liquid crystals. The chiral nature of the annihilators induces a transformation of the nematic liquid crystal into chiral nematic liquid crystals(N*LC), establishing an excellent chiral matrix. Upon the incorporation of the sensitizer Pt TPBP and subsequent excitation at 635 nm, the system demonstrates two independent triplet–triplet annihilation photon upconversion(TTA-UC) with the emission in blue and yellow, aided by thermally activated triplet–triplet energy transfer(TTET). This is accompanied by the simultaneous generation of upconverting circularly polarized luminescence(UC-CPL) and downshifting near-infrared circularly polarized luminescence(DS-CPL) originating from the residual luminescence of Pt TPBP. Remarkably,fine-tuning the ratio between the two annihilators allows the TTA-UC system to exhibit multicolor CPL emission with an amplified luminescence dissymmetry factor(glum, reaching up to 0.6). Our study unveils a previously unreported “one-excitation-to-three-emissions” system and provides a versatile strategy for modulating CPL emissions, surpassing conventional methodologies.展开更多
Chiral luminescence materials have potential applications in the field of three-dimensional displays due to their circularly polarized luminescence(CPL)characteristics.However,the further development of circularly pol...Chiral luminescence materials have potential applications in the field of three-dimensional displays due to their circularly polarized luminescence(CPL)characteristics.However,the further development of circularly polarized organic light-emitting diodes(CP-OLEDs)needs to meet the requirements of high efficiency,high color purity,low cost,and high dissymmetry factor(gPLor gEL),chiral multiple resonance thermally activated delayed fluorescence(MR-TADF)materials are considered as candidates in these aspects.Herein,based on a pair of chiral spirofluorene precursors,two pairs of high-performance chiral MR-TADF emitters((R/S)-p-Spiro-DtBuCzB and(R/S)-m-Spiro-DtBuCzB)are developed,which exhibit strong emissions peaking at 491 and 502 nm in toluene with full-width at half-maximum values of 25 and 33 nm,respectively.In addition,small singlet–triplet energy gaps of 0.15 and 0.10 eV with high absolute photoluminescence efficiencies of 95.0%and 96.7%are observed for p-Spiro-DtBuCzB and m-Spiro-DtBuCzB molecules,respectively.OLEDs based on p-Spiro-DtBuCzB and m-Spiro-DtBuCzB display high maximum external quantum efficiencies of 29.6%and 33.8%,respectively.Most importantly,CP-OLEDs present symmetric circularly polarized electroluminescence spectra with|gEL|factors of 3.36×10^(-4)and 7.66×10^(-4)for devices based on(R/S)-p-Spiro-DtBuCzB and(R/S)-m-Spiro-DtBuCzB enantiomers,respectively.展开更多
Chirality is an important natural characteristic of organic molecules,and chiral organic molecules have shown extensive application in areas such as pharmaceutical development and material science.Benefiting from the ...Chirality is an important natural characteristic of organic molecules,and chiral organic molecules have shown extensive application in areas such as pharmaceutical development and material science.Benefiting from the ability to achieve circularly polarized luminescence(CPL),chiral luminescent materials have shown potential applications in anti-glare display,optical communication and,3D display,etc.Due to the ability to harvest both singlet and triplet excitons by a fast reverse intersystem crossing process without involving noble metals,chiral thermally activated delayed fluorescence(TADF)materials with point chirality,axial chirality,planar chirality and helical chirality are regarded as the state-of-the-art materials for circularly polarized organic light-emitting diodes(CP-OLEDs).In recent years,the chiral TADF materials and CP-OLEDs have rapidly developed,but unfortunately,the dissymmetry factors(g)are far from the requirement of practical applications.The ideal emitters and devices should have both high efficiency and a g factor,or at least a balance between these two elements.This review gives an overview of recent progress in chiral TADF materials,with a particular focus on the chiral skeleton,CPL property and device performance.Furthermore,the molecular design concept,device structure and methods to improve the g factors of chiral materials and CP-OLEDs are also discussed.展开更多
Chiral thermally activated delayed fluorescence(TADF) molecules showing circularly polarized luminescence(CPL) have great potential in 3D displays. However, the relationships among CPL property, device performance and...Chiral thermally activated delayed fluorescence(TADF) molecules showing circularly polarized luminescence(CPL) have great potential in 3D displays. However, the relationships among CPL property, device performance and molecule structure are still not clear. In this article, we develop a strategy to promote dissymmetry factors without sacrifice in device performance and study the impact of molecule structures towards CPL property. Three novel TADF enantiomers are synthesized and studied.(R/S)-SCN with diminutive cyano group as an acceptor shows dissymmetry factor |gPL| ≈ 1.4×10^(-3) and noticeable organic light-emitting diode(OLED) performances with a maximum external quantum efficiency(EQEmax) of 23.0%. For(R/S)-SPHCN, the prolonged electron withdrawing group benzonitrile enhances |gPL| up to 3.6×10^(-3) with decreased device EQEmaxof 15.4%. By further replacing benzonitrile with(trifluoromethyl)pyridine, the enantiomers of(R/S)-SCFPY show similar |gPL| factors of 3.5×10^(-3) and device EQE_(max)up to 23.3%, which represents the highest efficiency among sprio-type TADF materials based OLEDs. Furthermore, the OLEDs also show obvious circularly polarized electroluminescence with gELfactors of-1.4/1.8×10^(-3),-3.6/3.6×10^(-3) and-3.7/3.6×10^(-3), respectively. These results indecate by delicate functional group engineering, high g factor can be achieved while maintaining decent device performances. Besides,(R/S)-SCFPY represents an impressive TADF emitter, which shows promoted g factor and recorded high device EQE_(max)among similar molecules.展开更多
Two pairs of Pt(Ⅱ) enantiomers((RR)/(SS)-Py Pt,((RR)/(SS)-Py: N,N’-(1,2-diphenylethane-1,2-diyl)dipicolinamide;(RR)-P/M-QPt,((RR)/(SS)-Q: N,N’-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(quinoline-2-carboxamide)) were...Two pairs of Pt(Ⅱ) enantiomers((RR)/(SS)-Py Pt,((RR)/(SS)-Py: N,N’-(1,2-diphenylethane-1,2-diyl)dipicolinamide;(RR)-P/M-QPt,((RR)/(SS)-Q: N,N’-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(quinoline-2-carboxamide)) were synthesized, respectively, with good circularly polarized luminescence(CPL) and tunable dissymmetry factors(g) by molecular self-induction with(RR)/(SS)-1,2-diphenylethane-1,2-diamine as carbon chiral sources. In the(RR)-P-QPt and(SS)-M-QPt, specific P-and M-configurations were effectively induced from intrinsic chiral carbon centres(R or S), ingeniously avoiding the racemic mixture formation and chiral separation. Furthermore, the chirality originating from both chiral carbon centres and helicene-like structure improves the g factor significantly, which provides a new molecular design strategy for chiral Pt(II) enantiomers with good CPL properties.展开更多
Circularly polarized luminescence(CPL)has gained considerable attention in various systems and has rapidly developed into an emerging research field.To meet the needs of actual applications in diverse fields,a high lu...Circularly polarized luminescence(CPL)has gained considerable attention in various systems and has rapidly developed into an emerging research field.To meet the needs of actual applications in diverse fields,a high luminescence dissymmetry factor(glum)and tunable optical performance of CPL would be the most urgent pursuit for researchers.Accordingly,many emerging CPL materials and various strategies have been developed to address these critical issues.Emissive cholesteric liquid crystals(CLCs),that is,luminescent self-organized helical superstructures,are considered to be ideal candidates for constructing CPL-active materials,as they not only exhibit high glum values,but also enable flexible optical control of CPL.This review mainly summarizes the characteristics of CPL based on CLCs as the bulk phase doped with different emitters,including aggregated induced emission molecules,conventional organic small molecules,polymer emitters,metal-organic complex emitters,and luminescent nanoparticles.In addition,the recent significant progress in stimulus-responsive CPL based on emissive CLCs in terms of several types of stimuli,including light,electricity,temperature,mechanical force,and multiple stimuli is presented.Finally,a short perspective on the opportunities and challenges associated with CPL-active materials based on the CLC field is provided.This review is anticipated to offer new insights and guidelines for developing CLC-based CPL-active materials for broader applications.展开更多
2219 aluminum alloys welding joints were prepared by Friction stir welding (FSW) and Variable polarity plasma arc welding (VPPAW).The microstructure of joints was characterized by means of OM,SEM,and EDX.Microhardness...2219 aluminum alloys welding joints were prepared by Friction stir welding (FSW) and Variable polarity plasma arc welding (VPPAW).The microstructure of joints was characterized by means of OM,SEM,and EDX.Microhardness measurements was performed to differentiate the joint zones and to evaluate the symmetry level of the joints with the help of nano-indentation experiment.The dissymmetry of microstructure and mechanical properties was found both in FSW joint and VPPAW joint.The dissymmetry in FSW joint can not be suppressed due to the nature of the mixing head,but the symmetry and satisfactory welding joint can be obtained by changing the working pattern of VPPAW.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foudation(0528)
文摘When image guided missile adopts guided search and common search law to search ground targets, under some conditions the movement of image on the monitor screen will be dissymmetrical, which is harmful for shooter to acquire and capture targets. To remove the dissymmetry of the image movement, such common search laws as parallel search law, "X" style search law, search law of one-dimension visual effect and cone search law are improved and designed again. Simulation results show that the dissymmetry can be removed by adopting all the above four improved search laws, but the search track of improved cone search law has serious transmutation compared with the original search track. The other three improved search laws have little transmutation of the search track, and they all can keep the main characters of the original search law. Study resuits are helpful for image guided missile in adopting guided search to choose appropriate search law.
文摘The dissymmetric flow phenomenon exists in a symmetric multistrand tundish. It was studied by the physical simulation experiment. The fundamental flow characteristic of dissymmetry was analyzed. The asymmetry of the flow field, the temperature field, and the inclusions distribution without flow-control devices (FCDs) were compared with those with FCDs. It is proved that the asymmetry of the flow and temperature field along the outlets at the long range is more obvious. The symmetric FCDs installation has a slight effect on the dissymmetric temperature field, simultaneously, the symmetry of the average residence time and the fluid flow pattern has improved, and the fluid flow in the tundish has been more reasonable. In case of a symmetric multistrand tundish having a large volume, the influence of the dissymmetric phenomenon should be considered and the flow behaviors in the whole tundish should be studied completely.
文摘The difference of regional economy comes from capital dissymmetry, technology dissymmetry, manpower dissymmetry and the information dissymmetry. In the knowledge-based economic ages, globalization and information exceed any age of the history. It provides the new terrace for the balanced development of global economy. The flows of capital and technology improve the regional dissymmetry of production factor. By establishing circulating channels, the flows of the production factor will be enlarged. This will raise the distribution efficiency of global resources and lead to the global economic growth.
基金supported by the National Natural Science Foundation of China (52173159, 92256304)the National Key Basic R&D Program of Ministry of Science and Technology of the People’s Republic of China (2021YFA1200303)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000)the Beijing Municipal Science and Technology Commission (JQ21003)。
文摘The modulation of circularly polarized luminescence(CPL) has become an increasingly prominent area of research. In this study,we propose a unique “one-excitation-to-three-emissions” CPL system through the co-assembly of an upconversion system,incorporating one sensitizer(Pt(II) mesotetraphenyl tetrabenzoporphyrine, Pt TPBP) and two annihilators(R/S-DPA and R/SBDP) within liquid crystals. The chiral nature of the annihilators induces a transformation of the nematic liquid crystal into chiral nematic liquid crystals(N*LC), establishing an excellent chiral matrix. Upon the incorporation of the sensitizer Pt TPBP and subsequent excitation at 635 nm, the system demonstrates two independent triplet–triplet annihilation photon upconversion(TTA-UC) with the emission in blue and yellow, aided by thermally activated triplet–triplet energy transfer(TTET). This is accompanied by the simultaneous generation of upconverting circularly polarized luminescence(UC-CPL) and downshifting near-infrared circularly polarized luminescence(DS-CPL) originating from the residual luminescence of Pt TPBP. Remarkably,fine-tuning the ratio between the two annihilators allows the TTA-UC system to exhibit multicolor CPL emission with an amplified luminescence dissymmetry factor(glum, reaching up to 0.6). Our study unveils a previously unreported “one-excitation-to-three-emissions” system and provides a versatile strategy for modulating CPL emissions, surpassing conventional methodologies.
基金supported by the National Natural Science Foundation of China(92256304,U23A20593)。
文摘Chiral luminescence materials have potential applications in the field of three-dimensional displays due to their circularly polarized luminescence(CPL)characteristics.However,the further development of circularly polarized organic light-emitting diodes(CP-OLEDs)needs to meet the requirements of high efficiency,high color purity,low cost,and high dissymmetry factor(gPLor gEL),chiral multiple resonance thermally activated delayed fluorescence(MR-TADF)materials are considered as candidates in these aspects.Herein,based on a pair of chiral spirofluorene precursors,two pairs of high-performance chiral MR-TADF emitters((R/S)-p-Spiro-DtBuCzB and(R/S)-m-Spiro-DtBuCzB)are developed,which exhibit strong emissions peaking at 491 and 502 nm in toluene with full-width at half-maximum values of 25 and 33 nm,respectively.In addition,small singlet–triplet energy gaps of 0.15 and 0.10 eV with high absolute photoluminescence efficiencies of 95.0%and 96.7%are observed for p-Spiro-DtBuCzB and m-Spiro-DtBuCzB molecules,respectively.OLEDs based on p-Spiro-DtBuCzB and m-Spiro-DtBuCzB display high maximum external quantum efficiencies of 29.6%and 33.8%,respectively.Most importantly,CP-OLEDs present symmetric circularly polarized electroluminescence spectra with|gEL|factors of 3.36×10^(-4)and 7.66×10^(-4)for devices based on(R/S)-p-Spiro-DtBuCzB and(R/S)-m-Spiro-DtBuCzB enantiomers,respectively.
基金supported by the National Natural Science Foundation of China(92256304,U23A20593)the Fundamental Research Funds for the Central Universities(020514380294)。
文摘Chirality is an important natural characteristic of organic molecules,and chiral organic molecules have shown extensive application in areas such as pharmaceutical development and material science.Benefiting from the ability to achieve circularly polarized luminescence(CPL),chiral luminescent materials have shown potential applications in anti-glare display,optical communication and,3D display,etc.Due to the ability to harvest both singlet and triplet excitons by a fast reverse intersystem crossing process without involving noble metals,chiral thermally activated delayed fluorescence(TADF)materials with point chirality,axial chirality,planar chirality and helical chirality are regarded as the state-of-the-art materials for circularly polarized organic light-emitting diodes(CP-OLEDs).In recent years,the chiral TADF materials and CP-OLEDs have rapidly developed,but unfortunately,the dissymmetry factors(g)are far from the requirement of practical applications.The ideal emitters and devices should have both high efficiency and a g factor,or at least a balance between these two elements.This review gives an overview of recent progress in chiral TADF materials,with a particular focus on the chiral skeleton,CPL property and device performance.Furthermore,the molecular design concept,device structure and methods to improve the g factors of chiral materials and CP-OLEDs are also discussed.
基金supported by the National Natural Science Foundation of China (21975119, 51773088)。
文摘Chiral thermally activated delayed fluorescence(TADF) molecules showing circularly polarized luminescence(CPL) have great potential in 3D displays. However, the relationships among CPL property, device performance and molecule structure are still not clear. In this article, we develop a strategy to promote dissymmetry factors without sacrifice in device performance and study the impact of molecule structures towards CPL property. Three novel TADF enantiomers are synthesized and studied.(R/S)-SCN with diminutive cyano group as an acceptor shows dissymmetry factor |gPL| ≈ 1.4×10^(-3) and noticeable organic light-emitting diode(OLED) performances with a maximum external quantum efficiency(EQEmax) of 23.0%. For(R/S)-SPHCN, the prolonged electron withdrawing group benzonitrile enhances |gPL| up to 3.6×10^(-3) with decreased device EQEmaxof 15.4%. By further replacing benzonitrile with(trifluoromethyl)pyridine, the enantiomers of(R/S)-SCFPY show similar |gPL| factors of 3.5×10^(-3) and device EQE_(max)up to 23.3%, which represents the highest efficiency among sprio-type TADF materials based OLEDs. Furthermore, the OLEDs also show obvious circularly polarized electroluminescence with gELfactors of-1.4/1.8×10^(-3),-3.6/3.6×10^(-3) and-3.7/3.6×10^(-3), respectively. These results indecate by delicate functional group engineering, high g factor can be achieved while maintaining decent device performances. Besides,(R/S)-SCFPY represents an impressive TADF emitter, which shows promoted g factor and recorded high device EQE_(max)among similar molecules.
基金supported by the National Natural Science Foundation of China (Nos. 51773088 and 21975119)。
文摘Two pairs of Pt(Ⅱ) enantiomers((RR)/(SS)-Py Pt,((RR)/(SS)-Py: N,N’-(1,2-diphenylethane-1,2-diyl)dipicolinamide;(RR)-P/M-QPt,((RR)/(SS)-Q: N,N’-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(quinoline-2-carboxamide)) were synthesized, respectively, with good circularly polarized luminescence(CPL) and tunable dissymmetry factors(g) by molecular self-induction with(RR)/(SS)-1,2-diphenylethane-1,2-diamine as carbon chiral sources. In the(RR)-P-QPt and(SS)-M-QPt, specific P-and M-configurations were effectively induced from intrinsic chiral carbon centres(R or S), ingeniously avoiding the racemic mixture formation and chiral separation. Furthermore, the chirality originating from both chiral carbon centres and helicene-like structure improves the g factor significantly, which provides a new molecular design strategy for chiral Pt(II) enantiomers with good CPL properties.
基金National Natural Science Foundation of China,Grant/Award Numbers:52073017,51773009FundamentalResearch Funds for the Central Universities+1 种基金NationalNatural Science Foundation of China,Grant/Award Numbers:52073017,51773009FundamentalResearch Funds for the Central Universities。
文摘Circularly polarized luminescence(CPL)has gained considerable attention in various systems and has rapidly developed into an emerging research field.To meet the needs of actual applications in diverse fields,a high luminescence dissymmetry factor(glum)and tunable optical performance of CPL would be the most urgent pursuit for researchers.Accordingly,many emerging CPL materials and various strategies have been developed to address these critical issues.Emissive cholesteric liquid crystals(CLCs),that is,luminescent self-organized helical superstructures,are considered to be ideal candidates for constructing CPL-active materials,as they not only exhibit high glum values,but also enable flexible optical control of CPL.This review mainly summarizes the characteristics of CPL based on CLCs as the bulk phase doped with different emitters,including aggregated induced emission molecules,conventional organic small molecules,polymer emitters,metal-organic complex emitters,and luminescent nanoparticles.In addition,the recent significant progress in stimulus-responsive CPL based on emissive CLCs in terms of several types of stimuli,including light,electricity,temperature,mechanical force,and multiple stimuli is presented.Finally,a short perspective on the opportunities and challenges associated with CPL-active materials based on the CLC field is provided.This review is anticipated to offer new insights and guidelines for developing CLC-based CPL-active materials for broader applications.
文摘2219 aluminum alloys welding joints were prepared by Friction stir welding (FSW) and Variable polarity plasma arc welding (VPPAW).The microstructure of joints was characterized by means of OM,SEM,and EDX.Microhardness measurements was performed to differentiate the joint zones and to evaluate the symmetry level of the joints with the help of nano-indentation experiment.The dissymmetry of microstructure and mechanical properties was found both in FSW joint and VPPAW joint.The dissymmetry in FSW joint can not be suppressed due to the nature of the mixing head,but the symmetry and satisfactory welding joint can be obtained by changing the working pattern of VPPAW.