期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8改进的脑癌检测算法
1
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 Bidirectional Feature Pyramid Network结构 Missed Softplus with Identity Shortcut激活函数 Minimum Point distance intersection over Union损失函数
下载PDF
基于改进YOLOv3的电容器外观缺陷检测 被引量:5
2
作者 魏相站 赵麒 周骅 《光电子.激光》 CAS CSCD 北大核心 2021年第12期1278-1284,共7页
针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替... 针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替换一般卷积操作,使得模型的参数量大幅度降低进而提高模型的检测速度,同时也带来了检测精度的降低;然后在网络结构中嵌入空间金字塔池化结构实现局部特征与全局特征的融合、引入距离交并比(distance intersection over union,DIoU)损失函数优化交并比(intersection over union,IoU)损失函数以及使用Mish激活函数优化Leaky ReLU激活函数来提高模型的检测精度。本文采用自制的电容器外观缺陷数据集进行实验,轻量化MQYOLOv3算法的平均精度均值(mean average precision,mAP)为87.96%,较优化前降低了1.16%,检测速度从1.5 FPS提升到7.7 FPS。实验表明,本文设计的轻量化MQYOLOv3算法在保证检测精度的同时,提高了检测速度。 展开更多
关键词 YOLOv3(you only look once v3) 空间金字塔池化 Mish激活函数 距离交并比(distance intersection over union DIoU)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部