A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algo...A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, ...To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.展开更多
To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature ...To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature Transform (SIFT) . It uses MSER to detect feature regions instead of difference of Gaussian. After fitted into elliptical regions,those regions will be normalized into unity circles and represented with SIFT descriptors. The method estimates fundamental matrix and removes outliers by auto-maximum a posteriori sample consensus after initial matching feature points. The experimental results indicate that the method is robust to viewpoint changes,can reduce computational complexity effectively and improve matching accuracy.展开更多
Over recent years, Convolutional Neural Networks (CNN) has improved performance on practically every image-based task, including Content-Based Image Retrieval (CBIR). Nevertheless, since features of CNN have altered o...Over recent years, Convolutional Neural Networks (CNN) has improved performance on practically every image-based task, including Content-Based Image Retrieval (CBIR). Nevertheless, since features of CNN have altered orientation, training a CBIR system to detect and correct the angle is complex. While it is possible to construct rotation-invariant features by hand, retrieval accuracy will be low because hand engineering only creates low-level features, while deep learning methods build high-level and low-level features simultaneously. This paper presents a novel approach that combines a deep learning orientation angle detection model with the CBIR feature extraction model to correct the rotation angle of any image. This offers a unique construction of a rotation-invariant CBIR system that handles the CNN features that are not rotation invariant. This research also proposes a further study on how a rotation-invariant deep CBIR can recover images from the dataset in real-time. The final results of this system show significant improvement as compared to a default CNN feature extraction model without the OAD.展开更多
针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对...针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。展开更多
文摘A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
基金Supported by the National Natural Science Foundation of China(60905012)
文摘To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.
文摘异源图像配准中,由于图像的成像机理差异,图像像素强度关联和旋转畸变是不可避免的两大问题,针对图像像素强度关联问题,提出了基于辐射不变特征变换(radiation-variation insensitive feature transform,RIFT)的图像配准算法,对图像间像素关联差异小的图像对配准有良好的精度,但对旋转畸变图像会产生较多错误匹配。对于旋转畸变问题,传统的ORB(oriented fast and rotated brief)算法,对旋转图像的配准有一定的稳定性,但对于强度变化不明显的图像对,特征点检测质量较低,配准精度不理想。因此本文将相位一致性(phase consistency,PC)融合进ORB算法,利用相位信息代替传统的图像强度信息,再构造旋转不变性BRIEF特征描述子,对图像像素强度变化和旋转畸变均具有鲁棒性。用图像像素强度关联不明显的红外图像和可见光图像进行配准实验,本文算法针对不同旋转幅度的图像的配准精度较高,RMSE稳定在1.7~2.1,优于RIFT算法,在特征点检测数量、配准精度和效率等性能上均有良好性能。
基金Sponsored by the Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No. KM201010772021the National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA74105)the National Natural Science Foundation of Chi-na(Grant No. 60803103)
文摘To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature Transform (SIFT) . It uses MSER to detect feature regions instead of difference of Gaussian. After fitted into elliptical regions,those regions will be normalized into unity circles and represented with SIFT descriptors. The method estimates fundamental matrix and removes outliers by auto-maximum a posteriori sample consensus after initial matching feature points. The experimental results indicate that the method is robust to viewpoint changes,can reduce computational complexity effectively and improve matching accuracy.
文摘Over recent years, Convolutional Neural Networks (CNN) has improved performance on practically every image-based task, including Content-Based Image Retrieval (CBIR). Nevertheless, since features of CNN have altered orientation, training a CBIR system to detect and correct the angle is complex. While it is possible to construct rotation-invariant features by hand, retrieval accuracy will be low because hand engineering only creates low-level features, while deep learning methods build high-level and low-level features simultaneously. This paper presents a novel approach that combines a deep learning orientation angle detection model with the CBIR feature extraction model to correct the rotation angle of any image. This offers a unique construction of a rotation-invariant CBIR system that handles the CNN features that are not rotation invariant. This research also proposes a further study on how a rotation-invariant deep CBIR can recover images from the dataset in real-time. The final results of this system show significant improvement as compared to a default CNN feature extraction model without the OAD.
文摘针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。