Objective From the ancient period cow’urine has been used as a medicine. In Veda, cow’urine was compared to the nectar. In Susrut, several medicinal properties of cow’ urine have been mentioned and are known to ca...Objective From the ancient period cow’urine has been used as a medicine. In Veda, cow’urine was compared to the nectar. In Susrut, several medicinal properties of cow’ urine have been mentioned and are known to cause weight loss, reversal of certain cardiac and kidney problems, indigestion, stomach ache, edema, etc. However, the literature and scripture did not mention the antigenotoxic properties of cow’urine. Methods In the present investigation, the antigenotoxic/ antioxidant properties of cow’ urine distillate and redistillate were studied in vitro. The antioxidant status and volatile fatty acid levels were determined. Actinomycin-D (0.1ol/L) and hydrogen peroxide (150 mol/L) were used for inducing DNA strand break with 0.1% DMSO as negative control. Dose for the antigenotoxic effect of cow’ urine was chosen from the dose response study carried out earlier. Results Both actinomycin-D and H2O2 caused statistically significant DNA unwinding of 80% & 75% respectively (P<0.001) as revealed by fluorimetric analysis of DNA unwinding (FADU), and the damage could be protected with the redistilled cow urine distillate (1, 50 & 100 ) in simultaneous treatment with genotoxic chemicals. Conclusion The redistillate of cowurine was found to possess total antioxidant status of around 2.6 mmol, contributed mainly by volatile fatty acids (1500 mg/L) as revealed by the GC-MS studies. These fatty acids and other antioxidants might cause the observed protective effects.展开更多
Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through...Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through a nearly thermoneutral process. The kinetic behavior of co-cracking reactions was investigated by different feed conditions: methanol feed only, olefin feed only and co-feed of methanol with olefins or F–T distillate. The results showed that methanol converted to C2–C6 olefins in first-order parallel reaction at low space time, methylation and oligomerization–cracking prevailed for the co-feed of methanol and C2–C5 olefins, while for C6–C8 olefins,monomolecular cracking was the dominant reaction whether fed alone or co-fed with methanol. For FT distillate and methanol co-feed, alkanes were almost un-reactive, C3–C5 olefins were obtained as main products, accounting for 71 wt% for all products. A comprehensive co-cracking reaction scheme was proposed and the model parameters were estimated by the nonlinear least square method. It was verified by experimental data that the kinetic model was reliable to predict major product distribution for co-cracking of FT distillate with methanol and could be used for further reactor development and process design.展开更多
Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastoge...Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastogenic activity of redistilled cow's urine distillate was studied in human polymorphonuclear leukocytes (HPNLs) and human peripheral lymphocytes in vitro challenged with manganese dioxide and hexavalent chromium as established genotoxicants and clastogens which could cause induction of DNA strand break, chromosomal aberration and micronucleus. Three different levels of RCUD: 1 μL/mL, 50 μL/mL and 100 μL/mL, were used in the study. Results Manganese dioxide and hexavalent chromium caused statistically significant DNA strand break, chromosomal aberration and micronucleus formation, which could be protected by redisfilled cow's urine distillate. Conclusion The redistilled cow's urine distillate posseses strong anfigenotoxic and antielastogenic properties against HPNLs and HLC treated with Cr^+6 and MnO2. This property is mainly due to the antioxidants present in RCUD.展开更多
A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional c...A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.展开更多
Objective To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants. Methods In the present investigation, we studied the antigenotoxic and ...Objective To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants. Methods In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr^+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr^+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 μL/mL, 100 μL/mL, and 200 μL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity MMC (0.29 μmol/L) for DNA strand break, chromosomal aberration and 0.51 μmol/L for micronucleus assay; Potassium dichromate (Cr^+6) 600 μmol/L for DNA strand break and 5 μmol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 μmol/L) for chromosomal aberration and 40 μmol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS. Results Mitomycin C (MMC) and hexavalent chromium (Cr^+6) induced statistically significant DNA strand break of respectively 69% and 71% (P〈0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 μL/mL, 100 μL/mL, and 200 μL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr^+6 and B[a]P were significantly protected (P〈0.001) by DTLE with and without metabolic activation. Conclusion Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.展开更多
Wax esters were derived from long chain fatty acids and long chain alcohols with chain length of 12 carbons or more. These compounds have many potential applications in cosmetics, pharmaceuticals and food industries. ...Wax esters were derived from long chain fatty acids and long chain alcohols with chain length of 12 carbons or more. These compounds have many potential applications in cosmetics, pharmaceuticals and food industries. The present work focuses on the synthesis of wax esters using palm fatty acid distillate and oleyl alcohol catalyzed by Amberlyst 15. Response surface methodology (RSM) based on a five-level, three-variable central composite design (CCD) was used to evaluate the interactive effects of synthesis, of amount of Amberlyst 15 catalyst (21.6-38.4% w/w), reaction time (18-102 min) and molar ratio (palm fatty acid distillate to oleyl alcohol, 1:1.16-1:2.84) on the percentage conversion of palm fatty acid distillate. The optimum conditions derived via RSM were: amount of catalyst 33% w/w, reaction time 95 minute and palm fatty acid to oleyl alcohol molar ratio 1:2.7. The actual experimental conversion was 81.52% under optimum condition, which compared well to the maximum predicted value of 80.50%. Analysis of the yield showed that at optimum condition, 80.54% wax esters were produced.展开更多
In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivat...In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivation caused by increased operating temperature from 45 to 50 ℃ could seriously affect the reusability of Novozym 435. The deactivation of Novozym 435 during the esterification of oleic acid with ethanol tended to be stronger than that in the system with methanol. Under the optimal conditions, considering both biocatalytic activity and stability of the enzyme, Novozym 435 could be reused for 13 cycles for biodiesel productions from oleic acid and absolute alcohols (methanol and ethanol) with FFA conversions of at least 90%. The presence of 4%-5% water in ethanol significantly affected the reusability of Novozym 435. Changes in the surface morphology of Novozym 435 during the esterification with various conditions were observed. It was revealed that the reduction in catalytic activity was related to the swelling degree of the catalyst surface, Additionally, biodiesel production from low cost renewable feedstocks, such as palm fatty acid distillate (PFAD) and 95% ethanol was examined, The esterification of PFAD with 95% ethanol catalyzed by Novozym 435 in 10-repeated batch operation showed the similar results in FFA conversion as compared to those using oleic acid. Novozym 435 remained active and could maintain 97.6% of its initial conversion after being used for 10 hatches.展开更多
Objective To study the carbon tetrachloride-induced hepatoprotective activity in cow urine. Methods Effect of cow urine distillate on liver function was studied in vivo in rats intoxicated with carbon tetrachloride (...Objective To study the carbon tetrachloride-induced hepatoprotective activity in cow urine. Methods Effect of cow urine distillate on liver function was studied in vivo in rats intoxicated with carbon tetrachloride (CC14). Hepatotoxicity was induced by a 1 : 1 (v/v) mixture of CCl4 in olive oil (5 mL/kg i.p). Protective effect of cow urine distillate (in three dose levels) and standard drug Silymarin (100 mg/kg, p.o) on liver function were studied in intoxicated rats. Parameters in the study included liver function tests and histological observations. Results The cow urine distillate decreased the levels of SGOT, SGPT, ALP, GGT, and total bilirubin in a dose-dependent manner (P〈0.05) as sylimarin. Conclusion The observed protective effects of cow urine distillate on liver function might be due to the presence of antioxidants in cow urine.展开更多
A novel hydrocracking Ni-W binary catalyst was tentatively designed and prepared by means ofimpregnation on mixed supports of modified Y zeolite and amorphous aluminosilicate . The structure andproperties of catalyst ...A novel hydrocracking Ni-W binary catalyst was tentatively designed and prepared by means ofimpregnation on mixed supports of modified Y zeolite and amorphous aluminosilicate . The structure andproperties of catalyst were extensively characterized by XRD, NH3-TPD, IR and XRF techniques. The perfor-mance of catalyst was evaluated by a 100-ml hydrogenation laboratory test unit with two single-stage fixed-bedreactors connected in series. The characterization results showed that the catalyst has a developed and con-centrated mesopores distribution, suitable acid sites and acid strength distribution, and uniform and highdispersion of metal sites. Under a high conversion rate of 73.8% with the >350℃ feedstock, a 98.1m% of C5+yield and 83.5% of middle distillates selectivity were obtained. The yield of middle distillates boiling between140℃and 370℃ was 68.70m% and its quality could meet the WWFC category III specification. It means thatthis catalyst could be used to produce more high quality clean middle distillates derived from heavy oilhydrocracking. The potential aromatic content of heavy naphtha from 65℃ to 140℃ was 37.5m%. The BMCIvalue of >370℃ tail oil was 6.6. The heavy naphtha and tail oil are premium feedstocks for catalytic reformingand steam cracker units.展开更多
A great deal of attention has been focused on the potential health benefits of using rice bran oil because it is a rich source of bioactive compounds. Rice bran oil deodorizer distillate (RBODD) is a byproduct obtaine...A great deal of attention has been focused on the potential health benefits of using rice bran oil because it is a rich source of bioactive compounds. Rice bran oil deodorizer distillate (RBODD) is a byproduct obtained from distillation of rice bran oil. Elevated plasma cholesterol level is one of the major risk factors for coronary heart disease. The objective of this study was to investigate the effects of tocols (tocopherols + tocotrienols) rich fraction isolated from RBODD on plasma and liver lipid concentrations in rats. Male Sprague Dawley rats (6 weeks of age) were randomly assigned into three groups: normal fat control (NFC), high fat control (HFC) and high fat diet plus tocols rich fraction (RBODD). RBODD was administered daily for 3 weeks by oral gavage using 5% of Tween-80 as a vehicle. The rats in the control groups received 5% of Tween-80 alone in the same manner. Blood samples and livers were collected at the end of the feeding period. RBODD group had significantly lower plasma triglyceride levels compared to the HFC group (p < 0.05). However, no significant changes for plasma total and lipoprotein cholesterol levels were found in RBODD compared with HFC. Compared to the rat fed HFC, hepatic free fatty acids were significantly reduced in the rats with the RBODD treatment (p < 0.05). The results suggest that the tocols rich fraction isolated from RBODD is associated with decreased plasma triglyceride and hepatic free fatty acids concentrations. Further study is needed to investigate the mechanism and optimal dose by which isomers of tocols lower triglyceride concentrations.展开更多
Shipping plays a vital role in the world economy.Around 90%of the world's trade is transported by ship in a cost-effective and reliable manner.Global shipping is responsible for 2-3%of the total global CO2 emissio...Shipping plays a vital role in the world economy.Around 90%of the world's trade is transported by ship in a cost-effective and reliable manner.Global shipping is responsible for 2-3%of the total global CO2 emissions.In addition,shipping accounts for up to 4-9%of all sulphur,and 10-15%of all nitrous oxide emissions.Without taking any measures,these emissions would more than double as seaborne trade is expected to further grow from 30 billion tone miles in 2006 to more than 100 billion in 2050.To counter these emissions the international community has developed frameworks for energy efficiency measures,as well as emission reduction targets for SOx and NOx in appointed ECAs(Emission Control Areas).Biofuels satisfy fully or partially the new emission regulations and sulfur limits without compromising the economy.The goal of this work is to study and evaluate the physicochemical properties of conventional marine distillate fuel and its blends with renewable-alternative fuels(UCOME(Used Cooking Oils Methyl Esters)and HVO(Hydrogenated Vegetable Oils)).展开更多
Palm fatty acid distillate (PFAD), a by-product of deodorization in palm oil refining, contains about 0.7%-1% vitamin E. The advantage of PFAD over other vitamin E sources is higher amount of tocotrienols than that ...Palm fatty acid distillate (PFAD), a by-product of deodorization in palm oil refining, contains about 0.7%-1% vitamin E. The advantage of PFAD over other vitamin E sources is higher amount of tocotrienols than that of tocopherols. Vitamin E purification of unsaponiable matter of PFAD was aimed to remove other impurities to obtain high vitamin E concentration, mainly tocotrienols. This research used low temperature solvent crystallization to purify vitamin E. To optimize response of vitamin concentration, a response surface method was applied with three factors, i.e., the ratio between solvent and unsaponifiable matter (A), crystallization temperature (B), and crystallization time (C). The relation of three factors was quadratic with equation Y = -128.54361 + 41.33904A - 0.87995B + 1.58941C + 0.00290AB - 0.044324AC + 0.00120BC - 3.33113A2 - 0.039535B2 - 0.02710C2. The optimum crystallization condition was obtained at ratio of solventto unsaponifiable matter of 6.04:1, crystallization temperature of-10.54 ℃, and crystallization time of 24.16 hours. Vitamin E enriched fraction from optimum crystallization conditions contained vitamin E of 20.13% (w/w).展开更多
A method which involves conversion of carboxylic acids to corresponding hydrocarbons and determination of high-resoiution mass spectrometry has been applied to the analysis of petroleum acids in Dushanzi distillate an...A method which involves conversion of carboxylic acids to corresponding hydrocarbons and determination of high-resoiution mass spectrometry has been applied to the analysis of petroleum acids in Dushanzi distillate and resulted in compound class identification of petroleum acids which have not been reported previously in Xinjiang petroleum.展开更多
A palm fatty acid distillate (PFAD) has been used for biodiesel production. An efficient sulfonated-glucose acid catalyst (SGAC) was prepared by sulfonation to catalyze the esterification reaction. The effect of t...A palm fatty acid distillate (PFAD) has been used for biodiesel production. An efficient sulfonated-glucose acid catalyst (SGAC) was prepared by sulfonation to catalyze the esterification reaction. The effect of three variables i.e. methanol-to-PFAD molar ratio, catalyst amount and reaction time, on the yield of PFAD esters was studied by the response surface methodology (RSM). The optimum reaction conditions were: 12.2:1 methanol-to- PFAD molar ratio, 2.9% catalyst concentration and 134 rain of time as predicted by the RSM. The reaction under the optimum conditions resulted in 94.5% of the free fatty acid (FFA) conversion with 92.4% of the FAME yield. The properties of the PFAD esters were determined according to biodiesel standards.展开更多
The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in ...The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.展开更多
The market worth of the crude oil transported to the international market has a great influence on the crude’s physical properties, as such demands that certain desirable physical properties ought to be possessed. Th...The market worth of the crude oil transported to the international market has a great influence on the crude’s physical properties, as such demands that certain desirable physical properties ought to be possessed. The distillation of crude oil is the first process in the sequence of refining operation and is key to refinery operations profitability. In this work, five crude oil samples were collected from a reservoir in the Niger Delta designated as S11A, S12A, S13A, S14A and S15A. Sample S11A was not treated with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc while samples S12A-S15A were treated with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc at different number of times. This was necessary to ascertain the effect of the bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc on crude oil physical properties and their distillate yield. After the treatment, the specific gravity, American Petroleum Institute (API), pour point, flash point and viscosity of the treated and untreated crude samples were determined and then the samples distilled with a distillation tester. From the results obtained, the bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc had </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">great influence on the physical properties of the samples as well as on the distillate yield. The specific gravities of the oil samples decreased as the number of times the samples were treated with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc increases and this in turn increased the crudes’ API. The pourpoint and viscosity decreased with increase in number of treatments of crude samples with bio-disc. As the number of treatments increased, the crude samples which were originally paraffinic were tending towards being naphthenic. The flash point and distillate yield increased with increase in number of treatments of crude samples with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc. Thus, treatment of crude oil with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">dic alters the physical properties of the crude</span><span style="font-family:Verdana;">.展开更多
The deodorizer distillate(DD)is a byproduct of vegetable oil processing industry and is rich in functional bioactive components.This study aimed to employ phosphorylation modification for DD to produce a new sustainab...The deodorizer distillate(DD)is a byproduct of vegetable oil processing industry and is rich in functional bioactive components.This study aimed to employ phosphorylation modification for DD to produce a new sustainable fatliquor.The bioactive ingredients in DD,namely fatty acids,sterols,and tocopherols,were determined by using HPLC and GLC.The results revealed that the DD sample contained a high percentage of unsaturated fatty acids(72.3%)and high levels ofγandδ-tocopherols(54.8%and 31.60%,respectively).Mechanical parameters(tensile strength,elongation at break,and tear strength)of leather were improved after being treated with the prepared fatliquor emulsion.Eventually,SEM showed that the texture of the fatliquored leather had been remarkably enhanced.Moreover,the fatliquored leather possessed effective antibacterial effect against the specified+ve,-ve bacteria,and Candida albicans microorganisms.The strength,fullness,soft handle,and elasticity of leather were all improved,and the grain of leather was protected from becoming loose after drying.展开更多
Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data predic...Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses.展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
The latent heat of condensation is lost to the atmosphere; hence it is not utilized to increase distillate output of single basin solar stills. This difficulty was overcome by attaching an additional basin to the main...The latent heat of condensation is lost to the atmosphere; hence it is not utilized to increase distillate output of single basin solar stills. This difficulty was overcome by attaching an additional basin to the main basin. The performance of the double basin solar still was also increased by attaching vacuum tubes to the lower basin; hence the lower basin possessed a higher tempera- ture throughout the day. The latent heat of condensation of the bottom basin was also utilized to increase distillate. But the distillate output of the compared with that of the proposed a novel approach to of the double basin solar still top basin was even lower bottom basin. This paper increase the distillate output attached with vacuum tubes by introducing different sensible energy storage materials like pebbles, black granite gravel and calcium stones to increase the basin area. Experiments were conducted in climate conditions of Mehsana (23.6000° N, 72.4000° E) Gujarat from April to September 2013 with a constant water depth of 2 cm in the top basin with and without the use of basin materials. The results showed that the distillate output of basin material with calcium stones is greater (74%) compared with that of black granite gravel and pebbles. The integration of vacuum tubes with solar still greatly increases the distillate output of the solar still by providing hot water at the lower basin.展开更多
文摘Objective From the ancient period cow’urine has been used as a medicine. In Veda, cow’urine was compared to the nectar. In Susrut, several medicinal properties of cow’ urine have been mentioned and are known to cause weight loss, reversal of certain cardiac and kidney problems, indigestion, stomach ache, edema, etc. However, the literature and scripture did not mention the antigenotoxic properties of cow’urine. Methods In the present investigation, the antigenotoxic/ antioxidant properties of cow’ urine distillate and redistillate were studied in vitro. The antioxidant status and volatile fatty acid levels were determined. Actinomycin-D (0.1ol/L) and hydrogen peroxide (150 mol/L) were used for inducing DNA strand break with 0.1% DMSO as negative control. Dose for the antigenotoxic effect of cow’ urine was chosen from the dose response study carried out earlier. Results Both actinomycin-D and H2O2 caused statistically significant DNA unwinding of 80% & 75% respectively (P<0.001) as revealed by fluorimetric analysis of DNA unwinding (FADU), and the damage could be protected with the redistilled cow urine distillate (1, 50 & 100 ) in simultaneous treatment with genotoxic chemicals. Conclusion The redistillate of cowurine was found to possess total antioxidant status of around 2.6 mmol, contributed mainly by volatile fatty acids (1500 mg/L) as revealed by the GC-MS studies. These fatty acids and other antioxidants might cause the observed protective effects.
文摘Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through a nearly thermoneutral process. The kinetic behavior of co-cracking reactions was investigated by different feed conditions: methanol feed only, olefin feed only and co-feed of methanol with olefins or F–T distillate. The results showed that methanol converted to C2–C6 olefins in first-order parallel reaction at low space time, methylation and oligomerization–cracking prevailed for the co-feed of methanol and C2–C5 olefins, while for C6–C8 olefins,monomolecular cracking was the dominant reaction whether fed alone or co-fed with methanol. For FT distillate and methanol co-feed, alkanes were almost un-reactive, C3–C5 olefins were obtained as main products, accounting for 71 wt% for all products. A comprehensive co-cracking reaction scheme was proposed and the model parameters were estimated by the nonlinear least square method. It was verified by experimental data that the kinetic model was reliable to predict major product distribution for co-cracking of FT distillate with methanol and could be used for further reactor development and process design.
文摘Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastogenic activity of redistilled cow's urine distillate was studied in human polymorphonuclear leukocytes (HPNLs) and human peripheral lymphocytes in vitro challenged with manganese dioxide and hexavalent chromium as established genotoxicants and clastogens which could cause induction of DNA strand break, chromosomal aberration and micronucleus. Three different levels of RCUD: 1 μL/mL, 50 μL/mL and 100 μL/mL, were used in the study. Results Manganese dioxide and hexavalent chromium caused statistically significant DNA strand break, chromosomal aberration and micronucleus formation, which could be protected by redisfilled cow's urine distillate. Conclusion The redistilled cow's urine distillate posseses strong anfigenotoxic and antielastogenic properties against HPNLs and HLC treated with Cr^+6 and MnO2. This property is mainly due to the antioxidants present in RCUD.
文摘A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.
文摘Objective To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants. Methods In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr^+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr^+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 μL/mL, 100 μL/mL, and 200 μL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity MMC (0.29 μmol/L) for DNA strand break, chromosomal aberration and 0.51 μmol/L for micronucleus assay; Potassium dichromate (Cr^+6) 600 μmol/L for DNA strand break and 5 μmol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 μmol/L) for chromosomal aberration and 40 μmol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS. Results Mitomycin C (MMC) and hexavalent chromium (Cr^+6) induced statistically significant DNA strand break of respectively 69% and 71% (P〈0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 μL/mL, 100 μL/mL, and 200 μL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr^+6 and B[a]P were significantly protected (P〈0.001) by DTLE with and without metabolic activation. Conclusion Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.
文摘Wax esters were derived from long chain fatty acids and long chain alcohols with chain length of 12 carbons or more. These compounds have many potential applications in cosmetics, pharmaceuticals and food industries. The present work focuses on the synthesis of wax esters using palm fatty acid distillate and oleyl alcohol catalyzed by Amberlyst 15. Response surface methodology (RSM) based on a five-level, three-variable central composite design (CCD) was used to evaluate the interactive effects of synthesis, of amount of Amberlyst 15 catalyst (21.6-38.4% w/w), reaction time (18-102 min) and molar ratio (palm fatty acid distillate to oleyl alcohol, 1:1.16-1:2.84) on the percentage conversion of palm fatty acid distillate. The optimum conditions derived via RSM were: amount of catalyst 33% w/w, reaction time 95 minute and palm fatty acid to oleyl alcohol molar ratio 1:2.7. The actual experimental conversion was 81.52% under optimum condition, which compared well to the maximum predicted value of 80.50%. Analysis of the yield showed that at optimum condition, 80.54% wax esters were produced.
基金the National Research Council of Thailand (NRCT) for financial supportthe 90th anniversary of Chulalongkorn University (Ratchadaphiseksomphot Endowment Fund)
文摘In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivation caused by increased operating temperature from 45 to 50 ℃ could seriously affect the reusability of Novozym 435. The deactivation of Novozym 435 during the esterification of oleic acid with ethanol tended to be stronger than that in the system with methanol. Under the optimal conditions, considering both biocatalytic activity and stability of the enzyme, Novozym 435 could be reused for 13 cycles for biodiesel productions from oleic acid and absolute alcohols (methanol and ethanol) with FFA conversions of at least 90%. The presence of 4%-5% water in ethanol significantly affected the reusability of Novozym 435. Changes in the surface morphology of Novozym 435 during the esterification with various conditions were observed. It was revealed that the reduction in catalytic activity was related to the swelling degree of the catalyst surface, Additionally, biodiesel production from low cost renewable feedstocks, such as palm fatty acid distillate (PFAD) and 95% ethanol was examined, The esterification of PFAD with 95% ethanol catalyzed by Novozym 435 in 10-repeated batch operation showed the similar results in FFA conversion as compared to those using oleic acid. Novozym 435 remained active and could maintain 97.6% of its initial conversion after being used for 10 hatches.
文摘Objective To study the carbon tetrachloride-induced hepatoprotective activity in cow urine. Methods Effect of cow urine distillate on liver function was studied in vivo in rats intoxicated with carbon tetrachloride (CC14). Hepatotoxicity was induced by a 1 : 1 (v/v) mixture of CCl4 in olive oil (5 mL/kg i.p). Protective effect of cow urine distillate (in three dose levels) and standard drug Silymarin (100 mg/kg, p.o) on liver function were studied in intoxicated rats. Parameters in the study included liver function tests and histological observations. Results The cow urine distillate decreased the levels of SGOT, SGPT, ALP, GGT, and total bilirubin in a dose-dependent manner (P〈0.05) as sylimarin. Conclusion The observed protective effects of cow urine distillate on liver function might be due to the presence of antioxidants in cow urine.
文摘A novel hydrocracking Ni-W binary catalyst was tentatively designed and prepared by means ofimpregnation on mixed supports of modified Y zeolite and amorphous aluminosilicate . The structure andproperties of catalyst were extensively characterized by XRD, NH3-TPD, IR and XRF techniques. The perfor-mance of catalyst was evaluated by a 100-ml hydrogenation laboratory test unit with two single-stage fixed-bedreactors connected in series. The characterization results showed that the catalyst has a developed and con-centrated mesopores distribution, suitable acid sites and acid strength distribution, and uniform and highdispersion of metal sites. Under a high conversion rate of 73.8% with the >350℃ feedstock, a 98.1m% of C5+yield and 83.5% of middle distillates selectivity were obtained. The yield of middle distillates boiling between140℃and 370℃ was 68.70m% and its quality could meet the WWFC category III specification. It means thatthis catalyst could be used to produce more high quality clean middle distillates derived from heavy oilhydrocracking. The potential aromatic content of heavy naphtha from 65℃ to 140℃ was 37.5m%. The BMCIvalue of >370℃ tail oil was 6.6. The heavy naphtha and tail oil are premium feedstocks for catalytic reformingand steam cracker units.
文摘A great deal of attention has been focused on the potential health benefits of using rice bran oil because it is a rich source of bioactive compounds. Rice bran oil deodorizer distillate (RBODD) is a byproduct obtained from distillation of rice bran oil. Elevated plasma cholesterol level is one of the major risk factors for coronary heart disease. The objective of this study was to investigate the effects of tocols (tocopherols + tocotrienols) rich fraction isolated from RBODD on plasma and liver lipid concentrations in rats. Male Sprague Dawley rats (6 weeks of age) were randomly assigned into three groups: normal fat control (NFC), high fat control (HFC) and high fat diet plus tocols rich fraction (RBODD). RBODD was administered daily for 3 weeks by oral gavage using 5% of Tween-80 as a vehicle. The rats in the control groups received 5% of Tween-80 alone in the same manner. Blood samples and livers were collected at the end of the feeding period. RBODD group had significantly lower plasma triglyceride levels compared to the HFC group (p < 0.05). However, no significant changes for plasma total and lipoprotein cholesterol levels were found in RBODD compared with HFC. Compared to the rat fed HFC, hepatic free fatty acids were significantly reduced in the rats with the RBODD treatment (p < 0.05). The results suggest that the tocols rich fraction isolated from RBODD is associated with decreased plasma triglyceride and hepatic free fatty acids concentrations. Further study is needed to investigate the mechanism and optimal dose by which isomers of tocols lower triglyceride concentrations.
文摘Shipping plays a vital role in the world economy.Around 90%of the world's trade is transported by ship in a cost-effective and reliable manner.Global shipping is responsible for 2-3%of the total global CO2 emissions.In addition,shipping accounts for up to 4-9%of all sulphur,and 10-15%of all nitrous oxide emissions.Without taking any measures,these emissions would more than double as seaborne trade is expected to further grow from 30 billion tone miles in 2006 to more than 100 billion in 2050.To counter these emissions the international community has developed frameworks for energy efficiency measures,as well as emission reduction targets for SOx and NOx in appointed ECAs(Emission Control Areas).Biofuels satisfy fully or partially the new emission regulations and sulfur limits without compromising the economy.The goal of this work is to study and evaluate the physicochemical properties of conventional marine distillate fuel and its blends with renewable-alternative fuels(UCOME(Used Cooking Oils Methyl Esters)and HVO(Hydrogenated Vegetable Oils)).
文摘Palm fatty acid distillate (PFAD), a by-product of deodorization in palm oil refining, contains about 0.7%-1% vitamin E. The advantage of PFAD over other vitamin E sources is higher amount of tocotrienols than that of tocopherols. Vitamin E purification of unsaponiable matter of PFAD was aimed to remove other impurities to obtain high vitamin E concentration, mainly tocotrienols. This research used low temperature solvent crystallization to purify vitamin E. To optimize response of vitamin concentration, a response surface method was applied with three factors, i.e., the ratio between solvent and unsaponifiable matter (A), crystallization temperature (B), and crystallization time (C). The relation of three factors was quadratic with equation Y = -128.54361 + 41.33904A - 0.87995B + 1.58941C + 0.00290AB - 0.044324AC + 0.00120BC - 3.33113A2 - 0.039535B2 - 0.02710C2. The optimum crystallization condition was obtained at ratio of solventto unsaponifiable matter of 6.04:1, crystallization temperature of-10.54 ℃, and crystallization time of 24.16 hours. Vitamin E enriched fraction from optimum crystallization conditions contained vitamin E of 20.13% (w/w).
文摘A method which involves conversion of carboxylic acids to corresponding hydrocarbons and determination of high-resoiution mass spectrometry has been applied to the analysis of petroleum acids in Dushanzi distillate and resulted in compound class identification of petroleum acids which have not been reported previously in Xinjiang petroleum.
基金Ministry of Science, Technology and Innovation (MOSTI),Malaysia for providing the e Science Project (Project No. 06-01-04-SF1780Vot No.5450746)
文摘A palm fatty acid distillate (PFAD) has been used for biodiesel production. An efficient sulfonated-glucose acid catalyst (SGAC) was prepared by sulfonation to catalyze the esterification reaction. The effect of three variables i.e. methanol-to-PFAD molar ratio, catalyst amount and reaction time, on the yield of PFAD esters was studied by the response surface methodology (RSM). The optimum reaction conditions were: 12.2:1 methanol-to- PFAD molar ratio, 2.9% catalyst concentration and 134 rain of time as predicted by the RSM. The reaction under the optimum conditions resulted in 94.5% of the free fatty acid (FFA) conversion with 92.4% of the FAME yield. The properties of the PFAD esters were determined according to biodiesel standards.
基金Project(51504036) supported by the National Natural Science Foundation of ChinaProject(2012CBA01207) supported by the National Basic Research Program of ChinaProject(2011AA03A409) supported by the National High-Tech Research and Development Program of China
文摘The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.
文摘The market worth of the crude oil transported to the international market has a great influence on the crude’s physical properties, as such demands that certain desirable physical properties ought to be possessed. The distillation of crude oil is the first process in the sequence of refining operation and is key to refinery operations profitability. In this work, five crude oil samples were collected from a reservoir in the Niger Delta designated as S11A, S12A, S13A, S14A and S15A. Sample S11A was not treated with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc while samples S12A-S15A were treated with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc at different number of times. This was necessary to ascertain the effect of the bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc on crude oil physical properties and their distillate yield. After the treatment, the specific gravity, American Petroleum Institute (API), pour point, flash point and viscosity of the treated and untreated crude samples were determined and then the samples distilled with a distillation tester. From the results obtained, the bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc had </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">great influence on the physical properties of the samples as well as on the distillate yield. The specific gravities of the oil samples decreased as the number of times the samples were treated with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc increases and this in turn increased the crudes’ API. The pourpoint and viscosity decreased with increase in number of treatments of crude samples with bio-disc. As the number of treatments increased, the crude samples which were originally paraffinic were tending towards being naphthenic. The flash point and distillate yield increased with increase in number of treatments of crude samples with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">disc. Thus, treatment of crude oil with bio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">dic alters the physical properties of the crude</span><span style="font-family:Verdana;">.
文摘The deodorizer distillate(DD)is a byproduct of vegetable oil processing industry and is rich in functional bioactive components.This study aimed to employ phosphorylation modification for DD to produce a new sustainable fatliquor.The bioactive ingredients in DD,namely fatty acids,sterols,and tocopherols,were determined by using HPLC and GLC.The results revealed that the DD sample contained a high percentage of unsaturated fatty acids(72.3%)and high levels ofγandδ-tocopherols(54.8%and 31.60%,respectively).Mechanical parameters(tensile strength,elongation at break,and tear strength)of leather were improved after being treated with the prepared fatliquor emulsion.Eventually,SEM showed that the texture of the fatliquored leather had been remarkably enhanced.Moreover,the fatliquored leather possessed effective antibacterial effect against the specified+ve,-ve bacteria,and Candida albicans microorganisms.The strength,fullness,soft handle,and elasticity of leather were all improved,and the grain of leather was protected from becoming loose after drying.
基金the National Natural Science Foundation of China(22108307)the Natural Science Foundation of Shandong Province(ZR2020KB006)the Outstanding Youth Fund of Shandong Provincial Natural Science Foundation(ZR2020YQ17).
文摘Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses.
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
文摘The latent heat of condensation is lost to the atmosphere; hence it is not utilized to increase distillate output of single basin solar stills. This difficulty was overcome by attaching an additional basin to the main basin. The performance of the double basin solar still was also increased by attaching vacuum tubes to the lower basin; hence the lower basin possessed a higher tempera- ture throughout the day. The latent heat of condensation of the bottom basin was also utilized to increase distillate. But the distillate output of the compared with that of the proposed a novel approach to of the double basin solar still top basin was even lower bottom basin. This paper increase the distillate output attached with vacuum tubes by introducing different sensible energy storage materials like pebbles, black granite gravel and calcium stones to increase the basin area. Experiments were conducted in climate conditions of Mehsana (23.6000° N, 72.4000° E) Gujarat from April to September 2013 with a constant water depth of 2 cm in the top basin with and without the use of basin materials. The results showed that the distillate output of basin material with calcium stones is greater (74%) compared with that of black granite gravel and pebbles. The integration of vacuum tubes with solar still greatly increases the distillate output of the solar still by providing hot water at the lower basin.