期刊文献+
共找到626篇文章
< 1 2 32 >
每页显示 20 50 100
Multi-effect distillation system for seawater desalination driven by tidal energy and low grade energy 被引量:2
1
作者 刘业凤 胡海涛 马福一 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期343-345,共3页
A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps du... A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system. 展开更多
关键词 multi-effect distillation for seawater desalination tidal energy low grade energy VACUUM
下载PDF
Synthesis of Heat Integrated Complex Distillation Systems via Stochastic Optimization Approaches 被引量:8
2
作者 袁希钢 安维中 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第5期495-507,共13页
This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland c... This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland complex columns, thermally coupled (linked) side strippers and side rectifiers as well as heat integration betweenthe different columns are simultaneously considered. The problem is formulated as an MINLP (mixed-integernonlinear programming) problem. A simulated annealing algorithm is proposed to deal with the MINLP problemand a shortcut method is applied to evaluate all required design parameters as well as the total cost function. Twoillustrating examples are presented. 展开更多
关键词 distillation system synthesis complex column heat integration ENCODING
下载PDF
A systematic approach for synthesizing a low-temperature distillation system 被引量:5
3
作者 Yiqing Luo Liang Kong Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第5期789-795,共7页
In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process... In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging. 展开更多
关键词 Energy system engineering Low-temperature distillation system Process synthesis distillation sequence Shaft work target
下载PDF
Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt 被引量:3
4
作者 Jun-Xia Geng Yang Yang +3 位作者 Hai-Ying Fu Yan Luo Qiang Dou Qing-Nuan Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第1期17-26,共10页
Low-pressure distillation has been proposed as a suitable technique for the recovery of carrier salt from molten salt reactor spent fuel.A closed-chamber distillation system,in which the pump is stopped and pressurein... Low-pressure distillation has been proposed as a suitable technique for the recovery of carrier salt from molten salt reactor spent fuel.A closed-chamber distillation system,in which the pump is stopped and pressureinduced salt distillation is performed,was arranged for fluoride salt treatment.A stair-step optimization process was demonstrated to improve the recovery efficiency by up to 99%.The pressure change curve was feasible for estimating the distillation process,and a method for displaying the pressure value online in order to determine the endpoint was also developed.The decontamination factor of Nd in the condensate salt was deduced to be greater than 100 with 1 wt%NdF3–FLiNaK distillation.The optimal conditions developed in this study showed a high recovery ratio for the fluoride carrier salt and a high separation efficiency for rare earth products. 展开更多
关键词 Low-pressure distillation Closed chamber Fluoride molten salt Recovery ratio
下载PDF
Comparison of Two Types of Control Structures for Benzene Chlorine Reactive Distillation Systems 被引量:2
5
作者 薄翠梅 张日东 +3 位作者 张程浩 汤吉海 乔旭 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期837-841,共5页
The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal econo... The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure. 展开更多
关键词 Reactive distillation Decentralized control structures Optimal set point Benzene chloride production
下载PDF
A Combined Forward Osmosis and Membrane Distillation System for Sidestream Treatment 被引量:2
6
作者 Taqsim Husnain Baoxia Mi Rumana Riffat 《Journal of Water Resource and Protection》 2015年第14期1111-1120,共10页
Separate treatment of high-nutrient sidestream is an efficient and cost effective way to decrease the loading on the main plant, resulting in lower effluent nutrient concentration. This study investigated the use of a... Separate treatment of high-nutrient sidestream is an efficient and cost effective way to decrease the loading on the main plant, resulting in lower effluent nutrient concentration. This study investigated the use of a combined forward osmosis-membrane distillation (FO-MD) system for the removal of nitrogen present in high concentration in sidestream from anaerobic digestion process. The combined system was able to achieve almost 100% rejection of solids and acetic acid, and more than 98% rejection of NH3-N from the sidestream. The high rejection of NH3-N was mainly achieved by the FO process. The solids in the feed solution contributed to fouling problem in both FO and MD, resulting in significant decline in flux. However, 76% or higher flux recovery was achieved for FO membrane by cleaning with tap water. We observed that flux recovery was due to removal of solids from the membrane surface by the cleaning process. FO membrane also demonstrated excellent performance for continuous operation when cleaned for 15 min in every 24 h interval. Overall, the combined FO-MD system was found to be an effective solution for treatment of nutrient rich sidestream. 展开更多
关键词 FORWARD Osmosis MEMBRANE distillation Sidestream TREATMENT NUTRIENT REMOVAL
下载PDF
Methanol Distillation System: Process Analysis and Column Design
7
作者 Sun Jinsheng Tian Yufeng Xu Shimin Ding Hui Wang Tao Li Xingang Zheng Yanmei 《化工进展》 EI CAS CSCD 北大核心 2005年第z1期40-51,共12页
Base on industrial research and experience, the process of methanol distillation is analyzed,and above all, a new concept of high pressure flowsheet and low pressure flowsheet is defined. The new configuration helps t... Base on industrial research and experience, the process of methanol distillation is analyzed,and above all, a new concept of high pressure flowsheet and low pressure flowsheet is defined. The new configuration helps to handle problems encountered in many factories in China. The inter influence between process and column internal pattern is also pointed out. Recommendation of new column internal designs is given. Finally, industrial examples tell the how the new concept works and the possibility of combining process to give more opens to solve engineering problems. 展开更多
关键词 METHANOL distillation two - effect distillation high PRESSURE flowsheet and low PRESSURE flowsheet flowsheet analysis simulation with hydraulic COLUMN INTERNAL design
下载PDF
Simultaneous optimization of heat-integrated crude oil distillation systems
8
作者 罗祎青 王丽雯 +1 位作者 王赫 袁希钢 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1518-1522,共5页
Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy co... Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization. 展开更多
关键词 Crude oil distillation Annual economic benefit Energy optimization Particle warm optimization system engineering
下载PDF
Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network:An industrial plant case
9
作者 Xiaoyu Zhou Xiangyi Gao +2 位作者 Mingmei Wang Erwei Song Erqiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期290-300,共11页
Neural networks are often viewed as pure‘black box’models,lacking interpretability and extrapolation capabilities of pure mechanistic models.This work proposes a new approach that,with the help of neural networks,im... Neural networks are often viewed as pure‘black box’models,lacking interpretability and extrapolation capabilities of pure mechanistic models.This work proposes a new approach that,with the help of neural networks,improves the conformity of the first-principal model to the actual plant.The final result is still a first-principal model rather than a hybrid model,which maintains the advantage of the high interpretability of first-principal model.This work better simulates industrial batch distillation which separates four components:water,ethylene glycol,diethylene glycol,and triethylene glycol.GRU(gated recurrent neural network)and LSTM(long short-term memory)were used to obtain empirical parameters of mechanistic model that are difficult to measure directly.These were used to improve the empirical processes in mechanistic model,thus correcting unreasonable model assumptions and achieving better predictability for batch distillation.The proposed method was verified using a case study from one industrial plant case,and the results show its advancement in improving model predictions and the potential to extend to other similar systems. 展开更多
关键词 Batch distillation Mechanistic models Neural network GRU LSTM
下载PDF
Environmental,economic and exergy analysis of separation of ternary azeotrope by variable pressure extractive distillation based on multi-objective optimization
10
作者 Peizhe Cui Jiafu Xing +5 位作者 Chen Li Mengjin Zhou Jifu Zhang Yasen Dai Limei Zhong Yinglong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期145-157,共13页
In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shi... In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shielding model and relative volatility method,ethylene glycol was selected as the extractant in the separation process.In addition,in view of the characteristic that the relative volatility between components changes with pressure,the multi-objective optimization method based on nondominated sorting genetic algorithm II optimizes the pressure and the amount of solvent cooperatively to avoid falling into the optimal local solution.Based on the optimal process parameters,the proposed heat-integrated process can reduce the gas emissions by 29.30%.The heat-integrated ED,further coupled with the pervaporation process,can reduce gas emission by 42.36%and has the highest exergy efficiency of 47.56%.In addition,based on the heat-integrated process,the proposed two heat pump assisted heat-integrated ED processes show good economic and environmental performance.The double heat pump assisted heat-integrated ED can reduce the total annual cost by 28.78%and the gas emissions by 55.83%compared with the basis process,which has a good application prospect.This work provides a feasible approach for the separation of ternary azeotropes. 展开更多
关键词 Extractive distillation Optimization MIXTURES SEPARATION
下载PDF
Microchannel reactive distillation for the conversion of aqueous ethanol to ethylene
11
作者 Johnny Saavedra-Lopez Stephen D.Davidson +6 位作者 Paul H.Humble Dan R.Bottenus Vanessa Lebarbier Dagle Yuan Jiang Charles J.Freeman Ward E.Te Grotenhuis Robert A.Dagle 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期481-493,共13页
Here we demonstrate the proof-of-concept for microchannel reactive distillation for alcohol-to-jet application:combining ethanol/water separation and ethanol dehydration in one unit operation.Ethanol is first distille... Here we demonstrate the proof-of-concept for microchannel reactive distillation for alcohol-to-jet application:combining ethanol/water separation and ethanol dehydration in one unit operation.Ethanol is first distilled into the vapor phase,converted to ethylene and water,and then the water co-product is condensed to shift the reaction equilibrium.Process intensification is achieved through rapid mass transfer-ethanol stripping from thin wicks using novel microchannel architectures-leading to lower residence time and improved separation efficiency.Energy savings are realized with integration of unit operations.For example,heat of condensing water can offset vaporizing ethanol.Furthermore,the dehydration reaction equilibrium shifts towards completion by immediate removal of the water byproduct upon formation while maintaining aqueous feedstock in the condensed phase.For aqueous ethanol feedstock(40%_w),71% ethanol conversion with 91% selectivity to ethylene was demonstrated at 220℃,600psig,and 0.28 h^(-1) wt hour space velocity.2.7 stages of separation were also demonstrated,under these conditions,using a device length of 8.3 cm.This provides a height equivalent of a theoretical plate(HETP),a measure of separation efficiency,of ^(3).3 cm.By comparison,conventional distillation packing provides an HETP of ^(3)0 cm.Thus,9,1 × reduction in HETP was demonstrated over conventional technology,providing a means for significant energy savings and an example of process intensification.Finally,preliminary process economic analysis indicates that by using microchannel reactive distillation technology,the operating and capital costs for the ethanol separation and dehydration portion of an envisioned alcoholto-jet process could be reduced by at least 35% and 55%,respectively,relative to the incumbent technology,provided future improvements to microchannel reactive distillation design and operability are made. 展开更多
关键词 Catalytic distillation Ethanol dehydration Process intensification MICROCHANNEL Alcohol-to-jet process
下载PDF
Application of sparse S transform network with knowledge distillation in seismic attenuation delineation
12
作者 Nai-Hao Liu Yu-Xin Zhang +3 位作者 Yang Yang Rong-Chang Liu Jing-Huai Gao Nan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2345-2355,共11页
Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul... Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods. 展开更多
关键词 S transform Deep learning Knowledge distillation Transfer learning Seismic attenuation delineation
下载PDF
Co-pyrolysis of Sewage Sludge with Distillation Residue: Kinetics Analysis via Iso-conversional Methods
13
作者 ZHOU Shangqun ZHAO Qinglin +1 位作者 YU Tian YAO Xiaojie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1188-1198,共11页
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy... This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste. 展开更多
关键词 sewage sludge CO-PYROLYSIS distillation residue KINETICS evolved gas analysis
下载PDF
Energy-saving design and optimization of pressure-swing-assisted ternary heterogenous azeotropic distillations
14
作者 Lianjie Wu Kun Lu +3 位作者 Qirui Li Lianghua Xu Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期1-7,共7页
A huge amount of energy is always consumed to separate the ternary azeotropic mixtures by distillations.The heterogeneous azeotropic distillation and the pressure-swing distillation are two kinds of effective technolo... A huge amount of energy is always consumed to separate the ternary azeotropic mixtures by distillations.The heterogeneous azeotropic distillation and the pressure-swing distillation are two kinds of effective technologies to separate heterogeneous azeotropes without entrainer addition.To give better play to the synergistic energy-saving effect of these two processes,a novel pressure-swing-assisted ternary heterogeneous azeotropic distillation(THAD)process is proposed firstly.In this process,the ternary heterogeneous azeotrope is decanted into two liquid phases before being refluxed into the azeotropic distillation column to avoid the aqueous phase remixing,and three columns'pressures are modified to decrease the flowrates of the recycle streams.Then the dividing wall column and heat integration technologies are introduced to further reduce its energy consumption,and the pressureswing-assisted ternary heterogeneous azeotropic dividing-wall column and its heat integration structure are achieved.A genetic algorithm procedure is used to optimize the proposed processes.The design results show that the proposed processes have higher energy efficiencies and lower CO_(2)emissions than the published THAD process. 展开更多
关键词 distillation SEPARATION Process control Process systems
下载PDF
LDAS&ET-AD:Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation
15
作者 Shuyi Li Hongchao Hu +3 位作者 Xiaohan Yang Guozhen Cheng Wenyan Liu Wei Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期2331-2359,共29页
Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric atta... Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems. 展开更多
关键词 Adversarial training adversarial distillation learnable distillation attack strategies teacher evolution strategy
下载PDF
A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme
16
作者 Nianyin Zeng Xinyu Li +2 位作者 Peishu Wu Han Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期487-501,共15页
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati... Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation. 展开更多
关键词 Attention mechanism knowledge distillation(KD) object detection tensor decomposition(TD) unmanned aerial vehicles(UAVs)
下载PDF
De-biased knowledge distillation framework based on knowledge infusion and label de-biasing techniques
17
作者 Yan Li Tai-Kang Tian +1 位作者 Meng-Yu Zhuang Yu-Ting Sun 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期57-68,共12页
Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in t... Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in the teacher model during the distillation process still persists.To address the inherent biases in knowledge distillation,we propose a de-biased knowledge distillation framework tailored for binary classification tasks.For the pre-trained teacher model,biases in the soft labels are mitigated through knowledge infusion and label de-biasing techniques.Based on this,a de-biased distillation loss is introduced,allowing the de-biased labels to replace the soft labels as the fitting target for the student model.This approach enables the student model to learn from the corrected model information,achieving high-performance deployment on lightweight student models.Experiments conducted on multiple real-world datasets demonstrate that deep learning models compressed under the de-biased knowledge distillation framework significantly outperform traditional response-based and feature-based knowledge distillation models across various evaluation metrics,highlighting the effectiveness and superiority of the de-biased knowledge distillation framework in model compression. 展开更多
关键词 De-biasing Deep learning Knowledge distillation Model compression
下载PDF
Strabismus Detection Based on Uncertainty Estimation and Knowledge Distillation
18
作者 Yibiao Rong Ziyin Yang +1 位作者 Ce Zheng Zhun Fan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期399-411,共13页
Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detectio... Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions. 展开更多
关键词 knowledge distillation strabismus detection uncertainty estimation
下载PDF
Anomaly Detection Method Using Feature Reconstruction Based Knowledge Distillation
19
作者 ZHU Xin-yu SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期115-124,236,共11页
In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationshi... In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection. 展开更多
关键词 Feature Reconstruction Anomaly Detection distillation Mechanism Industrial Production
下载PDF
A Real-time Prediction System for Molecular-level Information of Heavy Oil Based on Machine Learning
20
作者 Yuan Zhuang Wang Yuan +8 位作者 Zhang Zhibo Yuan Yibo Yang Zhe Xu Wei Lin Yang Yan Hao Zhou Xin Zhao Hui Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期121-134,共14页
Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data predic... Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses. 展开更多
关键词 heavy distillate oil molecular composition deep learning SHAP interpretation method
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部