期刊文献+
共找到627篇文章
< 1 2 32 >
每页显示 20 50 100
Use of various MgO resources for high-purity Mg metal production through molten salt electrolysis and vacuum distillation 被引量:1
1
作者 Hyeong-Jun Jeoung Tae-Hyuk Lee +5 位作者 Youngjae Kim Jin-Young Lee Young Min Kim Toru HOkabe Kyung-Woo Yi Jungshin Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期562-579,共18页
A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted u... A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted using a Cu cathode in MgF2– LiF – KCl molten salt at 1043 K by applying an average current of 1.44 A for 12.5 h. The electrolysis of calcined North Korean magnesite and seawater Mg O clinker yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 89.6–92.4%. The electrolysis of oxidized Mg O-C refractory brick, aged ferronickel slag, and ferronickel slag yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 59.3–92.3%. The vacuum distillation of Mg alloys obtained was conducted at 1300 K for 10 h to produce high-purity Mg metal. After vacuum distillation, Mg metal with a purity of above 99.994% was obtained. Therefore, this study demonstrates the feasibility of the production of high-purity Mg metal from various Mg O resources using a novel electrolytic process with a Cu cathode, followed by vacuum distillation. 展开更多
关键词 High-purity magnesium Magnesium oxide resources Electrolytic process Metal cathode Vacuum distillation
下载PDF
System for High Throughput Water Extraction from Soil Material for Stable Isotope Analysis of Water 被引量:1
2
作者 Timothy S. Goebel Robert J. Lascano 《Journal of Analytical Sciences, Methods and Instrumentation》 2012年第4期203-207,共5页
A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than ... A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process multiple samples simultaneously is advantageous and necessary for ecological or hydrological investigations. Presented here is a vacuum distillation apparatus, having six ports, that can process up to 30 samples per day. The distillation system coupled with the Los Gatos Research DLT-100 Liquid Water Isotope Analyzer is capable of analyzing all of the samples that are generated by vacuum distillation. These two systems allow larger sampling rates making investigations into water movement through an ecological system possible at higher temporal and spatial resolution. 展开更多
关键词 ISOTOPE VACUUM DISTILLATION SOIL
下载PDF
Production of high-purity Mg metal from dolomite through novel molten salt electrolysis and vacuum distillation
3
作者 Hyeong-Jun Jeoung Tae-Hyuk Lee +2 位作者 Jin-Young Lee Kyung-Woo Yi Jungshin Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1308-1320,共13页
In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten s... In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten salt at 1083–1173 K by applying an average current of 1.42–1.46 A for 9.50–21.0 h,the current efficiency of 66.4–88.6%was obtained.The produced Mg alloys consisted of MgCu_(2)and Cu(Mg)or MgCu_(2)and CuMg_(2)phases,depending on the Mg concentration in the Mg alloy.When the electrolysis of calcined dolomite was conducted in MgF_(2)–LiF–CaF_(2)molten salt at 1083 K,the current efficiency was 40.9–71.4%,owing to undesired reactions such as electroreduction of Ca^(2+)or/and CO_(3)^(2−)ions.Meanwhile,the current efficiency increased from 40.9%to 63.2%by utilizing a Pt anode,because the occurrence of CO_(3)^(2−)ions in the molten salt was prevented.After vacuum distillation of the obtained Mg alloys at 1300 K for 10 h,Mg metal with a purity of 99.9996–99.9998%was produced.Therefore,the feasibility of this novel process for the production of high-purity Mg metal from dolomite was demonstrated. 展开更多
关键词 High-purity magnesium DOLOMITE Magnesium oxide Electrolytic process Copper metal cathode Vacuum distillation
下载PDF
Continuous Distillation of Non-ideal Mixtures Through Graphical Methods
4
作者 Guillermo Flores-Sanchez Jonathan Ibarra-Bahena +2 位作者 Antonio Rodriguez-Martinez R.J. Romero MarthaLilia Dominguez-Patifio 《Journal of Chemistry and Chemical Engineering》 2012年第7期619-624,共6页
The current paper deals with the way in which the liquid-vapor equilibrium can be predicted, using the program Microsoft-Excel to obtain the bubble temperatures of twenty different non-ideal mixtures, the location of ... The current paper deals with the way in which the liquid-vapor equilibrium can be predicted, using the program Microsoft-Excel to obtain the bubble temperatures of twenty different non-ideal mixtures, the location of the azeotrope and the relation of the minimal reflux. The Wilson model was used for the activity coefficient and the cubic equation of state was used for the fugacity coefficient, utilizing the Pitzer correlation for the second virial coefficient. 展开更多
关键词 Liquid-vapor equilibrium fugacity coefficient activity coefficient AZEOTROPE distillation.
下载PDF
Miscibility of light oil and flue gas under thermal action 被引量:1
5
作者 XI Changfeng WANG Bojun +7 位作者 ZHAO Fang HUA Daode QI Zongyao LIU Tong ZHAO Zeqi TANG Junshi ZHOU You WANG Hongzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期164-171,共8页
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi... The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions. 展开更多
关键词 light oil flue gas flooding thermal miscible flooding miscible law distillation phase transition minimum miscible pressure minimum miscible temperature
下载PDF
Environmental,economic and exergy analysis of separation of ternary azeotrope by variable pressure extractive distillation based on multi-objective optimization
6
作者 Peizhe Cui Jiafu Xing +5 位作者 Chen Li Mengjin Zhou Jifu Zhang Yasen Dai Limei Zhong Yinglong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期145-157,共13页
In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shi... In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shielding model and relative volatility method,ethylene glycol was selected as the extractant in the separation process.In addition,in view of the characteristic that the relative volatility between components changes with pressure,the multi-objective optimization method based on nondominated sorting genetic algorithm II optimizes the pressure and the amount of solvent cooperatively to avoid falling into the optimal local solution.Based on the optimal process parameters,the proposed heat-integrated process can reduce the gas emissions by 29.30%.The heat-integrated ED,further coupled with the pervaporation process,can reduce gas emission by 42.36%and has the highest exergy efficiency of 47.56%.In addition,based on the heat-integrated process,the proposed two heat pump assisted heat-integrated ED processes show good economic and environmental performance.The double heat pump assisted heat-integrated ED can reduce the total annual cost by 28.78%and the gas emissions by 55.83%compared with the basis process,which has a good application prospect.This work provides a feasible approach for the separation of ternary azeotropes. 展开更多
关键词 Extractive distillation Optimization MIXTURES SEPARATION
下载PDF
Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network:An industrial plant case
7
作者 Xiaoyu Zhou Xiangyi Gao +2 位作者 Mingmei Wang Erwei Song Erqiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期290-300,共11页
Neural networks are often viewed as pure‘black box’models,lacking interpretability and extrapolation capabilities of pure mechanistic models.This work proposes a new approach that,with the help of neural networks,im... Neural networks are often viewed as pure‘black box’models,lacking interpretability and extrapolation capabilities of pure mechanistic models.This work proposes a new approach that,with the help of neural networks,improves the conformity of the first-principal model to the actual plant.The final result is still a first-principal model rather than a hybrid model,which maintains the advantage of the high interpretability of first-principal model.This work better simulates industrial batch distillation which separates four components:water,ethylene glycol,diethylene glycol,and triethylene glycol.GRU(gated recurrent neural network)and LSTM(long short-term memory)were used to obtain empirical parameters of mechanistic model that are difficult to measure directly.These were used to improve the empirical processes in mechanistic model,thus correcting unreasonable model assumptions and achieving better predictability for batch distillation.The proposed method was verified using a case study from one industrial plant case,and the results show its advancement in improving model predictions and the potential to extend to other similar systems. 展开更多
关键词 Batch distillation Mechanistic models Neural network GRU LSTM
下载PDF
Cascade equilibrium stage relaxation method by introducing equilibrium efficiency parameter
8
作者 Xuepu Cao Shengkun Jia +2 位作者 Xing Qian Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期145-156,共12页
Optimizing multistage processes,such as distillation or absorption,is a complex mixed-integer nonlinear programming(MINLP)problem.Relaxing integer into continuous variables and solving the easier nonlinear programming... Optimizing multistage processes,such as distillation or absorption,is a complex mixed-integer nonlinear programming(MINLP)problem.Relaxing integer into continuous variables and solving the easier nonlinear programming(NLP)problem is an optimization idea for the multistage process.In this article,we propose a relaxation method based on the efficiency parameter.When the efficiency parameter is 1or 0,the proposed model is equivalent to the complete existence or inexistence of the equilibrium stage.And non-integer efficiency represents partial existence.A multi-component absorption case shows a natural penalty for non-integer efficiency,which can assist the efficiency parameter converging to 0 or 1.However,its penalty is weaker than the existing relaxation models,such as the bypass efficiency model.In a simple distillation case,we show that this property can weaken the nonconvexity of the optimization problem and increase the probability of obtaining better optimization results. 展开更多
关键词 Mathematical modeling ABSORPTION DISTILLATION Optimization
下载PDF
Microchannel reactive distillation for the conversion of aqueous ethanol to ethylene
9
作者 Johnny Saavedra-Lopez Stephen D.Davidson +6 位作者 Paul H.Humble Dan R.Bottenus Vanessa Lebarbier Dagle Yuan Jiang Charles J.Freeman Ward E.Te Grotenhuis Robert A.Dagle 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期481-493,共13页
Here we demonstrate the proof-of-concept for microchannel reactive distillation for alcohol-to-jet application:combining ethanol/water separation and ethanol dehydration in one unit operation.Ethanol is first distille... Here we demonstrate the proof-of-concept for microchannel reactive distillation for alcohol-to-jet application:combining ethanol/water separation and ethanol dehydration in one unit operation.Ethanol is first distilled into the vapor phase,converted to ethylene and water,and then the water co-product is condensed to shift the reaction equilibrium.Process intensification is achieved through rapid mass transfer-ethanol stripping from thin wicks using novel microchannel architectures-leading to lower residence time and improved separation efficiency.Energy savings are realized with integration of unit operations.For example,heat of condensing water can offset vaporizing ethanol.Furthermore,the dehydration reaction equilibrium shifts towards completion by immediate removal of the water byproduct upon formation while maintaining aqueous feedstock in the condensed phase.For aqueous ethanol feedstock(40%_w),71% ethanol conversion with 91% selectivity to ethylene was demonstrated at 220℃,600psig,and 0.28 h^(-1) wt hour space velocity.2.7 stages of separation were also demonstrated,under these conditions,using a device length of 8.3 cm.This provides a height equivalent of a theoretical plate(HETP),a measure of separation efficiency,of ^(3).3 cm.By comparison,conventional distillation packing provides an HETP of ^(3)0 cm.Thus,9,1 × reduction in HETP was demonstrated over conventional technology,providing a means for significant energy savings and an example of process intensification.Finally,preliminary process economic analysis indicates that by using microchannel reactive distillation technology,the operating and capital costs for the ethanol separation and dehydration portion of an envisioned alcoholto-jet process could be reduced by at least 35% and 55%,respectively,relative to the incumbent technology,provided future improvements to microchannel reactive distillation design and operability are made. 展开更多
关键词 Catalytic distillation Ethanol dehydration Process intensification MICROCHANNEL Alcohol-to-jet process
下载PDF
LDAS&ET-AD:Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation
10
作者 Shuyi Li Hongchao Hu +3 位作者 Xiaohan Yang Guozhen Cheng Wenyan Liu Wei Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期2331-2359,共29页
Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric atta... Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems. 展开更多
关键词 Adversarial training adversarial distillation learnable distillation attack strategies teacher evolution strategy
下载PDF
Energy-saving design and optimization of pressure-swing-assisted ternary heterogenous azeotropic distillations
11
作者 Lianjie Wu Kun Lu +3 位作者 Qirui Li Lianghua Xu Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期1-7,共7页
A huge amount of energy is always consumed to separate the ternary azeotropic mixtures by distillations.The heterogeneous azeotropic distillation and the pressure-swing distillation are two kinds of effective technolo... A huge amount of energy is always consumed to separate the ternary azeotropic mixtures by distillations.The heterogeneous azeotropic distillation and the pressure-swing distillation are two kinds of effective technologies to separate heterogeneous azeotropes without entrainer addition.To give better play to the synergistic energy-saving effect of these two processes,a novel pressure-swing-assisted ternary heterogeneous azeotropic distillation(THAD)process is proposed firstly.In this process,the ternary heterogeneous azeotrope is decanted into two liquid phases before being refluxed into the azeotropic distillation column to avoid the aqueous phase remixing,and three columns'pressures are modified to decrease the flowrates of the recycle streams.Then the dividing wall column and heat integration technologies are introduced to further reduce its energy consumption,and the pressureswing-assisted ternary heterogeneous azeotropic dividing-wall column and its heat integration structure are achieved.A genetic algorithm procedure is used to optimize the proposed processes.The design results show that the proposed processes have higher energy efficiencies and lower CO_(2)emissions than the published THAD process. 展开更多
关键词 DISTILLATION SEPARATION Process control Process systems
下载PDF
Co-pyrolysis of Sewage Sludge with Distillation Residue: Kinetics Analysis via Iso-conversional Methods
12
作者 ZHOU Shangqun ZHAO Qinglin +1 位作者 YU Tian YAO Xiaojie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1188-1198,共11页
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy... This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste. 展开更多
关键词 sewage sludge CO-PYROLYSIS distillation residue KINETICS evolved gas analysis
下载PDF
Process synthesis for the separation of coal-to-ethanol products
13
作者 Qingping Qu Daoyan Liu +1 位作者 Hao Lyu Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期263-278,共16页
The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synth... The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synthesis of the ethanol distillation system is impracticable for exhaustive comparison and difficult for conventional superstructure-based optimization as rigorous models are used.This work adopts a superstructure-based framework,which combines the strategy that adaptively selects branches of the state-equipment network and the parallel stochastic algorithm for process synthesis.High-performance computing significantly reduces time consumption,and the adaptive strategy substantially lowers the complexity of the superstructure model.Moreover,parallel computing,elite search,population redistribution,and retention strategies for irrelevant parameters are used to improve the optimization efficiency further.The optimization terminates after 3000 generations,providing a flowsheet solution that applies two non-sharp splitting options in its distillation sequence.As a result,the 59-dimension superstructure-based optimization was solved efficiently via a differential evolution algorithm,and a high-quality solution with a 28.34%lower total annual cost than the benchmark was obtained.Meanwhile,the solution of the superstructure-based optimization is comparable to that obtained by optimizing a single specific configuration one by one.It indicates that the superstructure-based optimization that combines the adaptive strategy can be a promising approach to handling the process synthesis of large-scale and complex chemical processes. 展开更多
关键词 Coal-to-ethanol Process synthesis Superstructure-based optimization Differential evolution algorithm DISTILLATION
下载PDF
Application of sparse S transform network with knowledge distillation in seismic attenuation delineation
14
作者 Nai-Hao Liu Yu-Xin Zhang +3 位作者 Yang Yang Rong-Chang Liu Jing-Huai Gao Nan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2345-2355,共11页
Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul... Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods. 展开更多
关键词 S transform Deep learning Knowledge distillation Transfer learning Seismic attenuation delineation
下载PDF
Learning Epipolar Line Window Attention for Stereo Image Super-Resolution Reconstruction
15
作者 Xue Li Hongying Zhang +1 位作者 Zixun Ye Xiaoru 《Computers, Materials & Continua》 SCIE EI 2024年第2期2847-2864,共18页
Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not... Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information.To address these challenges,this paper introduces a novel epipolar line window attention stereo image super-resolution network(EWASSR).For detail feature restoration,we design a feature extractor based on Transformer and convolutional neural network(CNN),which consists of(shifted)window-based self-attention((S)W-MSA)and feature distillation and enhancement blocks(FDEB).This combination effectively solves the problem of global image perception and local feature attention and captures more discriminative high-frequency features of the image.Furthermore,to address the problem of offset of complementary pixels in stereo images,we propose an epipolar line window attention(EWA)mechanism,which divides windows along the epipolar direction to promote efficient matching of shifted pixels,even in pixel smooth areas.More accurate pixel matching can be achieved using adjacent pixels in the window as a reference.Extensive experiments demonstrate that our EWASSR can reconstruct more realistic detailed features.Comparative quantitative results show that in the experimental results of our EWASSR on the Middlebury and Flickr1024 data sets for 2×SR,compared with the recent network,the Peak signal-to-noise ratio(PSNR)increased by 0.37 dB and 0.34 dB,respectively. 展开更多
关键词 Stereo SR epipolar line window attention feature distillation
下载PDF
De-biased knowledge distillation framework based on knowledge infusion and label de-biasing techniques
16
作者 Yan Li Tai-Kang Tian +1 位作者 Meng-Yu Zhuang Yu-Ting Sun 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期57-68,共12页
Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in t... Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in the teacher model during the distillation process still persists.To address the inherent biases in knowledge distillation,we propose a de-biased knowledge distillation framework tailored for binary classification tasks.For the pre-trained teacher model,biases in the soft labels are mitigated through knowledge infusion and label de-biasing techniques.Based on this,a de-biased distillation loss is introduced,allowing the de-biased labels to replace the soft labels as the fitting target for the student model.This approach enables the student model to learn from the corrected model information,achieving high-performance deployment on lightweight student models.Experiments conducted on multiple real-world datasets demonstrate that deep learning models compressed under the de-biased knowledge distillation framework significantly outperform traditional response-based and feature-based knowledge distillation models across various evaluation metrics,highlighting the effectiveness and superiority of the de-biased knowledge distillation framework in model compression. 展开更多
关键词 De-biasing Deep learning Knowledge distillation Model compression
下载PDF
A Real-time Prediction System for Molecular-level Information of Heavy Oil Based on Machine Learning
17
作者 Yuan Zhuang Wang Yuan +8 位作者 Zhang Zhibo Yuan Yibo Yang Zhe Xu Wei Lin Yang Yan Hao Zhou Xin Zhao Hui Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期121-134,共14页
Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data predic... Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses. 展开更多
关键词 heavy distillate oil molecular composition deep learning SHAP interpretation method
下载PDF
A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme
18
作者 Nianyin Zeng Xinyu Li +2 位作者 Peishu Wu Han Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期487-501,共15页
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati... Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation. 展开更多
关键词 Attention mechanism knowledge distillation(KD) object detection tensor decomposition(TD) unmanned aerial vehicles(UAVs)
下载PDF
DPAL-BERT:A Faster and Lighter Question Answering Model
19
作者 Lirong Yin Lei Wang +8 位作者 Zhuohang Cai Siyu Lu Ruiyang Wang Ahmed AlSanad Salman A.AlQahtani Xiaobing Chen Zhengtong Yin Xiaolu Li Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期771-786,共16页
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ... Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency. 展开更多
关键词 DPAL-BERT question answering systems knowledge distillation model compression BERT Bi-directional long short-term memory(BiLSTM) knowledge information transfer PAL-BERT training efficiency natural language processing
下载PDF
Strabismus Detection Based on Uncertainty Estimation and Knowledge Distillation
20
作者 Yibiao Rong Ziyin Yang +1 位作者 Ce Zheng Zhun Fan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期399-411,共13页
Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detectio... Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions. 展开更多
关键词 knowledge distillation strabismus detection uncertainty estimation
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部