High-level talent is an important part of the university talent strategy,how to effectively manage high-level talent is the most important issue at present.Especially located in the western mountainous area“ZUNYI Nor...High-level talent is an important part of the university talent strategy,how to effectively manage high-level talent is the most important issue at present.Especially located in the western mountainous area“ZUNYI Normal College”such as colleges and universities,funding sources,poor research conditions and other disadvantages led to the poor attractiveness of the university’s talent,the phenomenon of serious brain drain,high-level talent management systematic research has a greater theoretical significance and important practical significance.This paper combines ZUNYI Normal College’s own schooling characteristics,summarizes the ZUNYI Normal College high-level talent management problems exist in the main social factors,school factors,the talent’s own factors and other factors in three major aspects,respectively,from the government,schools and talents from the individual three perspectives to propose management strategies and countermeasures.展开更多
三峡库区周期性水位升降引起的消落带岩体劣化对典型危岩岸坡稳定性具有重大影响。基于野外调研及地勘资料,采用通用离散单元法程序(universal distinct element code,简称UDEC)研究了消落带劣化区形态对近水平层状高陡危岩岸坡的稳定...三峡库区周期性水位升降引起的消落带岩体劣化对典型危岩岸坡稳定性具有重大影响。基于野外调研及地勘资料,采用通用离散单元法程序(universal distinct element code,简称UDEC)研究了消落带劣化区形态对近水平层状高陡危岩岸坡的稳定性影响。研究表明:目前三峡库区巫山段的近水平层状危岩岸坡消落带岩体劣化严重,在不同消落带劣化区存在紧密层状、松散碎裂状、溶蚀凹腔状、含挤压碎裂带等典型消落带劣化区形态;含有第1种消落带劣化区形态的危岩岸坡稳定性较好,危岩体位移较小,失稳模式为滑移破坏;含有第2种消落带劣化区形态的危岩岸坡危岩体先向坡内偏移,其后随着消落带岩体支撑强度弱化向坡外倾倒破坏;含有第3种消落带劣化区形态的危岩岸坡危岩体向坡外位移较大,失稳模式为倾倒破坏;含有第4种消落带劣化区形态的危岩岸坡稳定性主要受挤压破碎带的力学性质控制,易产生沿破碎带切割面的旋转滑移破坏;通过对以上4种劣化区形态的危岩岸坡增加防治加固措施,危岩体的变形位移得到了不同程度的有效控制。展开更多
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
文摘High-level talent is an important part of the university talent strategy,how to effectively manage high-level talent is the most important issue at present.Especially located in the western mountainous area“ZUNYI Normal College”such as colleges and universities,funding sources,poor research conditions and other disadvantages led to the poor attractiveness of the university’s talent,the phenomenon of serious brain drain,high-level talent management systematic research has a greater theoretical significance and important practical significance.This paper combines ZUNYI Normal College’s own schooling characteristics,summarizes the ZUNYI Normal College high-level talent management problems exist in the main social factors,school factors,the talent’s own factors and other factors in three major aspects,respectively,from the government,schools and talents from the individual three perspectives to propose management strategies and countermeasures.
文摘三峡库区周期性水位升降引起的消落带岩体劣化对典型危岩岸坡稳定性具有重大影响。基于野外调研及地勘资料,采用通用离散单元法程序(universal distinct element code,简称UDEC)研究了消落带劣化区形态对近水平层状高陡危岩岸坡的稳定性影响。研究表明:目前三峡库区巫山段的近水平层状危岩岸坡消落带岩体劣化严重,在不同消落带劣化区存在紧密层状、松散碎裂状、溶蚀凹腔状、含挤压碎裂带等典型消落带劣化区形态;含有第1种消落带劣化区形态的危岩岸坡稳定性较好,危岩体位移较小,失稳模式为滑移破坏;含有第2种消落带劣化区形态的危岩岸坡危岩体先向坡内偏移,其后随着消落带岩体支撑强度弱化向坡外倾倒破坏;含有第3种消落带劣化区形态的危岩岸坡危岩体向坡外位移较大,失稳模式为倾倒破坏;含有第4种消落带劣化区形态的危岩岸坡稳定性主要受挤压破碎带的力学性质控制,易产生沿破碎带切割面的旋转滑移破坏;通过对以上4种劣化区形态的危岩岸坡增加防治加固措施,危岩体的变形位移得到了不同程度的有效控制。
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.