With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburie...With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.展开更多
This paper uses a mathematical method to develop an analytical solution to the local buckling behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under combined uniform longitud...This paper uses a mathematical method to develop an analytical solution to the local buckling behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under combined uniform longitudinal uniaxial compressive and uniform in-plane shear loads. Fitted formulas are derived for plates with clamped edges and simplified supported edges. Two examples are given to demonstrate the application of the current method: one is a plate on tensionless spring foundations and the other is the contact between the steel sheet and elastic solid foundation. Finite element (FE) analysis is also conducted to validate the analytical results. Good agreement is obtained between the current method and FE analysis.展开更多
Due to high temperature and pressure,unburied or shallow buried submarine pipelines experience lateral global buckling. Excessive bending caused by uncontrolled deformation may threaten the safety of the pipeline syst...Due to high temperature and pressure,unburied or shallow buried submarine pipelines experience lateral global buckling. Excessive bending caused by uncontrolled deformation may threaten the safety of the pipeline system. Thus,the integer of a post-buckling pipeline section should be assessed under design temperature and pressure differences. This study focuses on the post-buckling pipeline safety assessment.First,a series of model tests based on sand obtained from Bohai Gulf were proposed,and soil resistance to pipelines with different embedment are measured. A dynamic soil resistance model with varying pipeline embedment and lateral displacement was established. The influence of embedment on peak soil resistance and residual soil resistance was analyzed. Second,the critical buckling forces of pipelines with different imperfections were analyzed. A"critical force range"was proposed to evaluate whether the pipeline exhibits lateral global buckling or not. Third,the limit state of a post-buckling pipeline in an engineering case was assessed. The assessment was proposed based on both load control condition and displacement control condition. Further comparisons show that pipelines reach their limit state according to load control condition far more quickly than according to displacement control condition.展开更多
As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been co...As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results.展开更多
We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love,...We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases.展开更多
An interaction function was constructed based on the axial compression/tension and shear loads of orthotropic plates.The coefficients of the polynomial function were determined by uniaxial test results.Buckling intera...An interaction function was constructed based on the axial compression/tension and shear loads of orthotropic plates.The coefficients of the polynomial function were determined by uniaxial test results.Buckling interaction and failure interaction formulae under combined axial tension/compression and shear loads were established.Based on the uniaxial load test results of orthotropic plates,the buckling load and bearing capacity under any proportion of the combined loads could be predicted by using the proposed interaction formulae.The buckling interaction curves and failure envelopes predicted by the proposed interaction formulae were in excellent agreement with the test results.展开更多
基金financially supported by the National Basic Key Research Program of China(Grant No.2014CB046802)the National Natural Science Foundation of China(Grant No.51679162)the Natural Science Foundation of Tianjin(Grant No.17JCZDJC39900)
文摘With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.
文摘This paper uses a mathematical method to develop an analytical solution to the local buckling behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under combined uniform longitudinal uniaxial compressive and uniform in-plane shear loads. Fitted formulas are derived for plates with clamped edges and simplified supported edges. Two examples are given to demonstrate the application of the current method: one is a plate on tensionless spring foundations and the other is the contact between the steel sheet and elastic solid foundation. Finite element (FE) analysis is also conducted to validate the analytical results. Good agreement is obtained between the current method and FE analysis.
基金Sponsored by the National Basic Key Research Program of China(Grant No.2014CB046802)the National Natural Science Foundation of China(Grant No.51679162)
文摘Due to high temperature and pressure,unburied or shallow buried submarine pipelines experience lateral global buckling. Excessive bending caused by uncontrolled deformation may threaten the safety of the pipeline system. Thus,the integer of a post-buckling pipeline section should be assessed under design temperature and pressure differences. This study focuses on the post-buckling pipeline safety assessment.First,a series of model tests based on sand obtained from Bohai Gulf were proposed,and soil resistance to pipelines with different embedment are measured. A dynamic soil resistance model with varying pipeline embedment and lateral displacement was established. The influence of embedment on peak soil resistance and residual soil resistance was analyzed. Second,the critical buckling forces of pipelines with different imperfections were analyzed. A"critical force range"was proposed to evaluate whether the pipeline exhibits lateral global buckling or not. Third,the limit state of a post-buckling pipeline in an engineering case was assessed. The assessment was proposed based on both load control condition and displacement control condition. Further comparisons show that pipelines reach their limit state according to load control condition far more quickly than according to displacement control condition.
基金This project was supported in part by the National Natural Science Foundation of ChinaFoundation of the SEdC of China for Returned Chinese Scholars from Abroad
文摘As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results.
文摘We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases.
文摘An interaction function was constructed based on the axial compression/tension and shear loads of orthotropic plates.The coefficients of the polynomial function were determined by uniaxial test results.Buckling interaction and failure interaction formulae under combined axial tension/compression and shear loads were established.Based on the uniaxial load test results of orthotropic plates,the buckling load and bearing capacity under any proportion of the combined loads could be predicted by using the proposed interaction formulae.The buckling interaction curves and failure envelopes predicted by the proposed interaction formulae were in excellent agreement with the test results.