We consider a modified Lnshnikov process as a model of a chemical polymer ization anf study the asymptotic behavior (in the thermodynamic limit;as N →∞)of a particular probability distribution on the set of N-dimens...We consider a modified Lnshnikov process as a model of a chemical polymer ization anf study the asymptotic behavior (in the thermodynamic limit;as N →∞)of a particular probability distribution on the set of N-dimensional vectors,tile kth component of which is the number of k-mers.The study study establisles the existence of three stages (subcritical,near-critical and supercritical stages)of polymerization,dependenting upon the ratio of association and dissociation rates of f polymers.The present paper concentrates on the analysis of tile subcritical stage.In the sibcritical.stages we show that tile size of the largest length of polymers of stize N is of the order.log N as N →+∞.展开更多
文摘We consider a modified Lnshnikov process as a model of a chemical polymer ization anf study the asymptotic behavior (in the thermodynamic limit;as N →∞)of a particular probability distribution on the set of N-dimensional vectors,tile kth component of which is the number of k-mers.The study study establisles the existence of three stages (subcritical,near-critical and supercritical stages)of polymerization,dependenting upon the ratio of association and dissociation rates of f polymers.The present paper concentrates on the analysis of tile subcritical stage.In the sibcritical.stages we show that tile size of the largest length of polymers of stize N is of the order.log N as N →+∞.