Distributed Operating System Formalization Generating System(DOSFGS)consists of agrammar subsystem DOSFSG and a semantics subsystem DOSFSS.DOSFSG is a kind ofContext-free grammar.DOSFSS is a semantics system with an o...Distributed Operating System Formalization Generating System(DOSFGS)consists of agrammar subsystem DOSFSG and a semantics subsystem DOSFSS.DOSFSG is a kind ofContext-free grammar.DOSFSS is a semantics system with an operating set.DOSFGS gen-erates a distributed operating system automatically according to the process of abstraction,description,and refinement.This paper discusses data structures,operating set and defini-tion of DOSFSS.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, d...This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, distributional chaotic of type k ( k∈{ 1,2,2 1 2 ,3 } ), and ( 0,1 ) -distribution.展开更多
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat...Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.展开更多
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA...In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.展开更多
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption...In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.展开更多
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf...This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.展开更多
Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper an...Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.展开更多
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut...In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.展开更多
According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary ...According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary and mobility applications,respectively.However,the general PEFC,which has Nafion membrane is operated within the temperature range between 60°C and 80°C.It is important to understand the temperature distribution in a PEFC cell for analyzing performance on working life span of PEFC.This study focuses on the combination of thin polymer electrolyte membrane(PEM)and thin gas diffusion layer(GDL)to improve power generation performance under relatively higher temperature operation conditions.In addition,this study also focuses on effect of micro porous layer(MPL),which can promote the mass transfer,over temperature distribution.The key aim of this study is to analyze impact of MPL of temperature distribution on the reaction surface(Treact)of a cell of PEFC using thin PEM and GDL with variations of H2 and O2 supply flow rates and their relative humidity(RH)with changing the initial operating temperature(Tini)from 80°C to 100°C.As a result,the distribution of Treact without MPL,for anode and cathode at 80%RH and Tini at 80°C and 90°C,is higher than normal conditions.There is a small difference in temperature distribution among different RH conditions with MPL.The distributions of Treact are relatively flat and almost the same among different RH conditions without MPL at Tini=100°C,while the distributions of Treact with MPL are almost the same among different RH conditions.This study is revealed that more even temperature distribution and higher power generation performance can be obtained in the case without MPL compared to the case with MPL.展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
Base station(BS)backup batteries(BSBBs),with their dispatchable capacity,are potential demand-side resources for future power systems.To enhance the power supply reliability and post-contingency frequency security of ...Base station(BS)backup batteries(BSBBs),with their dispatchable capacity,are potential demand-side resources for future power systems.To enhance the power supply reliability and post-contingency frequency security of power systems,we propose a two-stage stochastic unit commitment(UC)model incorporating operational reserve and post-contingency frequency support provisions from massive BSBBs in cellular networks,in which the minimum backup energy demand is considered to ensure BS power supply reliability.The energy,operational reserve,and frequency support ancillary services are co-optimized to handle the power balance and post-contingency frequency security in both forecasted and stochastic variable renewable energy(VRE)scenarios.Furthermore,we propose a dedicated and scalable distributed optimization framework to enable autonomous optimizations for both dispatching center(DC)and BSBBs.The BS model parameters are stored and processed locally,while only the values of BS decision variables are required to upload to DC under the proposed distributed optimization framework,which safeguards BS privacy effectively.Case studies on a modified IEEE 14-bus system demonstrate the effectiveness of the proposed method in promoting VRE accommodation,ensuring post-contingency frequency security,enhancing operational economics,and fully utilizing BSBBs'energy and power capacity.Besides,the proposed distributed optimization framework has been validated to converge to a feasible solution with near-optimal performance within limited iterations.Additionally,numerical results on the Guangdong 500 kV provincial power system in China verify the scalability and practicality of the proposed distributed optimization framework.展开更多
Dynamic operating envelopes(DOEs),as key enablers to facilitate distributed energy resource(DER)integration,have attracted increasing attention in the past years.However,uncertainties,which may come from load forecast...Dynamic operating envelopes(DOEs),as key enablers to facilitate distributed energy resource(DER)integration,have attracted increasing attention in the past years.However,uncertainties,which may come from load forecasting errors or inaccurate network parameters,have been rarely discussed in DOE calculation,leading to compromised quality of the hosting capacity allocation strategy.This letter studies how to calculate DOEs that are immune to such uncertainties based on a linearised unbalanced three-phase optimal power flow(UTOPF)model.With uncertain parameters constrained by norm balls,formulations for calculating robust DOEs(RDOEs)are presented along with discussions on their tractability.Two cases,including a 2-bus illustrative network and a representative Australian network,are tested to demonstrate the effectiveness and efficiency of the proposed approach.展开更多
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
The relation between generalized operators and operator-valued distributions is discussed so that these two viewpoints can be used alternatively to explain quantum fields.
Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To...Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.展开更多
基金Supported by the High Technology Research and Development Programme of China.
文摘Distributed Operating System Formalization Generating System(DOSFGS)consists of agrammar subsystem DOSFSG and a semantics subsystem DOSFSS.DOSFSG is a kind ofContext-free grammar.DOSFSS is a semantics system with an operating set.DOSFGS gen-erates a distributed operating system automatically according to the process of abstraction,description,and refinement.This paper discusses data structures,operating set and defini-tion of DOSFSS.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
文摘This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, distributional chaotic of type k ( k∈{ 1,2,2 1 2 ,3 } ), and ( 0,1 ) -distribution.
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.
基金The National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.
基金supported by National Natural Science Foundation of China (Grant No. 50875016, 51075023)Fundamental Research Funds for the Central Universities of China (Grant No. JD0903, JD0904)
文摘In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.
文摘This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.
文摘Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
基金The authors gratefully acknowledge the support of the Enhancement Strategy of Multi-Type Energy Integration of Active Distribution Network(YNKJXM20220113).
文摘In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.
基金This work is supported by Mie Prefecture IndustrialResearch Institute and the authors gratefullyacknowledge.
文摘According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary and mobility applications,respectively.However,the general PEFC,which has Nafion membrane is operated within the temperature range between 60°C and 80°C.It is important to understand the temperature distribution in a PEFC cell for analyzing performance on working life span of PEFC.This study focuses on the combination of thin polymer electrolyte membrane(PEM)and thin gas diffusion layer(GDL)to improve power generation performance under relatively higher temperature operation conditions.In addition,this study also focuses on effect of micro porous layer(MPL),which can promote the mass transfer,over temperature distribution.The key aim of this study is to analyze impact of MPL of temperature distribution on the reaction surface(Treact)of a cell of PEFC using thin PEM and GDL with variations of H2 and O2 supply flow rates and their relative humidity(RH)with changing the initial operating temperature(Tini)from 80°C to 100°C.As a result,the distribution of Treact without MPL,for anode and cathode at 80%RH and Tini at 80°C and 90°C,is higher than normal conditions.There is a small difference in temperature distribution among different RH conditions with MPL.The distributions of Treact are relatively flat and almost the same among different RH conditions without MPL at Tini=100°C,while the distributions of Treact with MPL are almost the same among different RH conditions.This study is revealed that more even temperature distribution and higher power generation performance can be obtained in the case without MPL compared to the case with MPL.
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
基金supported in part by the National Nature Science Foundation of China(No.52177088).
文摘Base station(BS)backup batteries(BSBBs),with their dispatchable capacity,are potential demand-side resources for future power systems.To enhance the power supply reliability and post-contingency frequency security of power systems,we propose a two-stage stochastic unit commitment(UC)model incorporating operational reserve and post-contingency frequency support provisions from massive BSBBs in cellular networks,in which the minimum backup energy demand is considered to ensure BS power supply reliability.The energy,operational reserve,and frequency support ancillary services are co-optimized to handle the power balance and post-contingency frequency security in both forecasted and stochastic variable renewable energy(VRE)scenarios.Furthermore,we propose a dedicated and scalable distributed optimization framework to enable autonomous optimizations for both dispatching center(DC)and BSBBs.The BS model parameters are stored and processed locally,while only the values of BS decision variables are required to upload to DC under the proposed distributed optimization framework,which safeguards BS privacy effectively.Case studies on a modified IEEE 14-bus system demonstrate the effectiveness of the proposed method in promoting VRE accommodation,ensuring post-contingency frequency security,enhancing operational economics,and fully utilizing BSBBs'energy and power capacity.Besides,the proposed distributed optimization framework has been validated to converge to a feasible solution with near-optimal performance within limited iterations.Additionally,numerical results on the Guangdong 500 kV provincial power system in China verify the scalability and practicality of the proposed distributed optimization framework.
基金supported by the CSIRO Strategic Project on Network Optimisation&Decarbonisation(No.OD-107890).
文摘Dynamic operating envelopes(DOEs),as key enablers to facilitate distributed energy resource(DER)integration,have attracted increasing attention in the past years.However,uncertainties,which may come from load forecasting errors or inaccurate network parameters,have been rarely discussed in DOE calculation,leading to compromised quality of the hosting capacity allocation strategy.This letter studies how to calculate DOEs that are immune to such uncertainties based on a linearised unbalanced three-phase optimal power flow(UTOPF)model.With uncertain parameters constrained by norm balls,formulations for calculating robust DOEs(RDOEs)are presented along with discussions on their tractability.Two cases,including a 2-bus illustrative network and a representative Australian network,are tested to demonstrate the effectiveness and efficiency of the proposed approach.
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.
文摘The relation between generalized operators and operator-valued distributions is discussed so that these two viewpoints can be used alternatively to explain quantum fields.
基金Project(K117K06225)supported by JSPS KAKENHI,Japan
文摘Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.