This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent apert...This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.展开更多
Airborne Distributed Coherent Aperture Radar(ADCAR)is one of the most promising next-generation radars to significantly improve target detection and discrimination abilities.However,time and phase synchronization amon...Airborne Distributed Coherent Aperture Radar(ADCAR)is one of the most promising next-generation radars to significantly improve target detection and discrimination abilities.However,time and phase synchronization among unit radars should be done before an ADCAR is intended to cohere on a potential target.To address this problem,a time and phase synchronization technique using clutter observations is proposed in this paper.Clutter returns from different azimuths and elevations on the surface of the earth are employed to calibrate system uncertainties.Two stages are mainly considered:a scene registration among range-Doppler units from different transmit/receive pairs is performed to enhance the clutter coherence in the first stage,followed by a joint estimation of those synchronization errors in the second stage.To relieve the computational burden,a novel Separable and Sequential Estimation(SSE)method is provided to separate the unknowns at the sacrifice of a range-Doppler unit.Moreover,performance analyses including the clutter coherence ability,estimation lower bound,and signal coherence loss are also performed.Finally,simulation results indicate that ADCAR time and phase synchronization is realized by using our methods.展开更多
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)+2 种基金the Foundation of Tsinghua University(20101081772)the Foundation of National Laboratory of Information Control Technology for Communication System of Chinathe Foundation of National Information Control Laboratory
文摘This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.
文摘Airborne Distributed Coherent Aperture Radar(ADCAR)is one of the most promising next-generation radars to significantly improve target detection and discrimination abilities.However,time and phase synchronization among unit radars should be done before an ADCAR is intended to cohere on a potential target.To address this problem,a time and phase synchronization technique using clutter observations is proposed in this paper.Clutter returns from different azimuths and elevations on the surface of the earth are employed to calibrate system uncertainties.Two stages are mainly considered:a scene registration among range-Doppler units from different transmit/receive pairs is performed to enhance the clutter coherence in the first stage,followed by a joint estimation of those synchronization errors in the second stage.To relieve the computational burden,a novel Separable and Sequential Estimation(SSE)method is provided to separate the unknowns at the sacrifice of a range-Doppler unit.Moreover,performance analyses including the clutter coherence ability,estimation lower bound,and signal coherence loss are also performed.Finally,simulation results indicate that ADCAR time and phase synchronization is realized by using our methods.