In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from th...In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from the jet tip to tail.The density of jet tip is approximately 1.5 g/cm3,which is lower than that of the reactive liner materials.The X-ray experiments show similar results with the simulations.The density decreasing effect of jet tip has a significant influence on the penetration behavior when the reactive jet impacts steel plate.According to the simulation results,this paper assumes that the density gradient in the jet section has linear distribution.Then,the deflagration pressure generated by each jet element at the bottom of crater is introduced into the Bernoulli equation.Based on the virtual origin model and Szendrei-Held equation,the analytical models for penetration depth and radial cratering of reactive jet with the density reduction are obtained.Moreover,to further prove the validity of analytical models,the penetration experiments of the reactive liner shaped charge against steel plate under different standoffs are carried out.There is a convergence between the analytical crater profiles and experimental results when reactive jets penetrate steel plates under different standoffs,especially at standoff of 1.5 and 2.0charge diameters.展开更多
Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to...Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.展开更多
The spatial distributions of different kinds of ions are usually not completely the same in the process of extracting.In order to study the reason for the different characteristics of ion extraction, a simplified simu...The spatial distributions of different kinds of ions are usually not completely the same in the process of extracting.In order to study the reason for the different characteristics of ion extraction, a simplified simulation model of Cu+ andCr+ ions extraction process was established by 2D3V (two-dimensional in space and three- dimensional in velocity space)particle-in-cell (PIC) method. The effects of different extraction voltages from 0 V to 500 V on the density distribution ofCu+ and Cr+ ions and the change of plasma emission surface were analyzed. On the basis of this model, the ion densitydistribution characteristics of Cu+ ions mixed with Li+, Mg+, K+, Fe+, Y+, Ag+, Xe+, Au+, and Pb+ ions respectivelyunder 200-V extraction voltage are further simulated, and it is revealed that the atomic mass of the ions is the key reason fordifferent ion density distributions when different kinds of ions are mixed and extracted, which provides support for furtherunderstanding of ion extraction characteristics.展开更多
The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basi...The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.展开更多
A three-dimensional crustal density model beneath North China is determined using P-wave traveltimes and gravity datum by sequential inversion method in this paper. To improve the uniqueness of the solution, we used a...A three-dimensional crustal density model beneath North China is determined using P-wave traveltimes and gravity datum by sequential inversion method in this paper. To improve the uniqueness of the solution, we used a linear relationship between velocity and density to achieve mutual conversions and constraints between velocity difference and density difference. Algebraic reconstruction technique (ART) was used in density inversion, which highly improved the calculation speed comparing with common least squares method. The inversion results indicate that the crustal density beneath North China is extremely inhomogeneous with its distribution coherent with regional tectonics. The lower crust of Taihang mountain tectonic zone shows an obvious low density characteristic. We proposed that it may be an indicator of upwelling of mantle materials or partial melting of lowermost crust.展开更多
The ion density distribution in the reaction chamber was diagnosed by a Langmuir probe. The rules of the ion density distribution were obtained under the pressures of 9 Pa, 13 Pa, 27 Pa and 53 Pa in the reaction chamb...The ion density distribution in the reaction chamber was diagnosed by a Langmuir probe. The rules of the ion density distribution were obtained under the pressures of 9 Pa, 13 Pa, 27 Pa and 53 Pa in the reaction chamber, different radio-frequency powers and different positions. The result indicates that the ion density decreases as the pressure increases, and increases as the power decreases. The ion density of axial position z =0 achieves 5.8×1010 on the center of coil under the power of 200 w and pressure of 9 Pa in the reaction chamber.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,th...Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.展开更多
The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current den...The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs.展开更多
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari...The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.展开更多
Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new eff...Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.展开更多
A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of dr...A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power展开更多
Electron density plays an important role in determining the properties of functional materials.Revealing the electron density distribution experimentally in real space can help to tune the properties of materials.Spin...Electron density plays an important role in determining the properties of functional materials.Revealing the electron density distribution experimentally in real space can help to tune the properties of materials.Spinel Li Mn2 O4 is one of the most promising cathode candidates because of its high voltage,low cost,and non-toxicity,but suffers severe capacity fading during electrochemical cycling due to the Mn dissolution.Real-space measurement of electron distribution of Li Mn2 O4 experimentally can provide direct evaluation on the strength of Mn–O bond and give an explanation of the structure stability.Here,through high energy synchrotron powder x-ray diffraction(SPXRD),accurate electron density distribution in spinel Li Mn2 O4 has been investigated based on the multipole model.The electron accumulation between Mn and O atoms in deformation density map indicates the shared interaction of Mn–O bond.The quantitative topological analysis at bond critical points shows that the Mn–O bond is relatively weak covalent interaction due to the oxygen loss.These findings suggest that oxygen stoichiometry is the key factor for preventing the Mn dissolution and capacity fading.展开更多
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat...Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions.展开更多
We perform an experimental study of two-dimensional(2D) electron density profiles of the laser-induced plasma plumes in air by ordinarily laboratorial interferometry. The electron density distributions measured show...We perform an experimental study of two-dimensional(2D) electron density profiles of the laser-induced plasma plumes in air by ordinarily laboratorial interferometry. The electron density distributions measured show a feature of hollow core. To illustrate the feature, we present a theoretical investigation by using dynamics analysis. In the simulation, the propagation of laser pulse with the evolution of electron density is utilized to evaluate ionization of air target for the plasma-formation stage. In the plasma-expansion stage, a simple adiabatic fluid dynamics is used to calculate the evolution of plasma outward expansion. The simulations show good agreements with experimental results, and demonstrate an effective way of determining 2D density profiles of the laser-induced plasma plume in gas.展开更多
Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity benefici...Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity beneficiation, the gravity separating process complexly affected by many kinds of factors is actually carried out at a fluctuant density; namely, the practical separation density is essentially a random variable.The studied results show that the equal-errors cut point is the mathematical expectation of this random variable, and the distribution density corresponds to the highest separation efficiency in the gravity separation process.This shows that the distribution density is the best working point of the gravity separation equipment under a particular operating condition.Therefore,in order to fully develop the function of the gravity separation equipment, the distribution density should be close to the theoretical separation density unlimitedly in the range of minimum fluctuation.展开更多
In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a nonuniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is f...In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a nonuniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail.展开更多
By Monte Carlo simulations, the effect of the dispersion of particle size distribution on the spatial density distributions and correlations of a quasi one-dimensional polydisperse granular gas with fractal size distr...By Monte Carlo simulations, the effect of the dispersion of particle size distribution on the spatial density distributions and correlations of a quasi one-dimensional polydisperse granular gas with fractal size distribution is investigated in the same inelasticity. The dispersive degree of the particle size distribution can be measured by a fractal dimension dr, and the smooth particles are constrained to move along a circle of length L, colliding inelastically with each other and thermalized by a viscosity heat bath. When the typical relaxation time τ of the driving Brownian process is longer than the mean collision time To, the system can reach a nonequilibrium steady state. The average energy of the system decays exponentially with time towards a stable asymptotic value, and the energy relaxation time τB to the steady state becomes shorter with increasing values of df. In the steady state, the spatial density distribution becomes more clusterized as df increases, which can be quantitatively characterized by statistical entropy of the system. Furthermore, the spatial correlation functions of density and velocities are found to be a power-law form for small separation distance of particles, and both of the correlations become stronger with the increase of df. Also, tile density clusterization is explained from the correlations.展开更多
Propellant ionization in the Hall thruster discharge channel is a significant process and has strong influence on the thruster's efficiency. In this work, the functional relation has been established between the ioni...Propellant ionization in the Hall thruster discharge channel is a significant process and has strong influence on the thruster's efficiency. In this work, the functional relation has been established between the ionization density distribution and the function of the ion energy distribution through the basic equations governing the ion flow in the Hall thruster channel and the method achieved for reconstructing the ionization density distribution inside the channel by ordinary plasma diagnosis of the potential distribution and ion energy spectrum of the plasma jet. The ionization density distributions of single and double charged ions in an ATON-thruster channel have been reconstructed according to the experimental data of the potential distribution along the axis of the channel and the ion energy spectrum of the plasma jet. The agreement between the calculation and experimental results of the percentage of double charged ions proves the validity of our method achieved in this work.展开更多
Periodical macro stripes have been found on diamond film prepared on a Si substrate by the multifilament chemical vapor deposition (CVD) method when the filament substrate distance is less than 2 mm. The properties ...Periodical macro stripes have been found on diamond film prepared on a Si substrate by the multifilament chemical vapor deposition (CVD) method when the filament substrate distance is less than 2 mm. The properties of the stripe on the film were characterized qualitatively by a scanning electron microscope (SEM) and Raman scattering spectrometer. The measurement results show that this stripe corresponds to the different kinds of the microstructure and thickness of the film. Through calculation of the thermal radiation energy density distribution on the surface of substrate, this phenomenon can be explained successfully.展开更多
基金supported by the National Natural Science Foundation of China(No.12002046)the China Postdoctoral Science Foundation(No.2020M680392)。
文摘In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from the jet tip to tail.The density of jet tip is approximately 1.5 g/cm3,which is lower than that of the reactive liner materials.The X-ray experiments show similar results with the simulations.The density decreasing effect of jet tip has a significant influence on the penetration behavior when the reactive jet impacts steel plate.According to the simulation results,this paper assumes that the density gradient in the jet section has linear distribution.Then,the deflagration pressure generated by each jet element at the bottom of crater is introduced into the Bernoulli equation.Based on the virtual origin model and Szendrei-Held equation,the analytical models for penetration depth and radial cratering of reactive jet with the density reduction are obtained.Moreover,to further prove the validity of analytical models,the penetration experiments of the reactive liner shaped charge against steel plate under different standoffs are carried out.There is a convergence between the analytical crater profiles and experimental results when reactive jets penetrate steel plates under different standoffs,especially at standoff of 1.5 and 2.0charge diameters.
基金supported by the Key Project Fund of the Chinese Academy of Sciences under grant number (kzcx2-yw-203-01)the Major State Basic Research Development Program of China(973 Program,Grant No.2007CB41170404)
文摘Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.
基金the Presidential Foundation of China Academy of Engineering Physics(Grant No.YZJJZQ2022016)the National Natural Science Foun-dation of China(Grant No.52207177).
文摘The spatial distributions of different kinds of ions are usually not completely the same in the process of extracting.In order to study the reason for the different characteristics of ion extraction, a simplified simulation model of Cu+ andCr+ ions extraction process was established by 2D3V (two-dimensional in space and three- dimensional in velocity space)particle-in-cell (PIC) method. The effects of different extraction voltages from 0 V to 500 V on the density distribution ofCu+ and Cr+ ions and the change of plasma emission surface were analyzed. On the basis of this model, the ion densitydistribution characteristics of Cu+ ions mixed with Li+, Mg+, K+, Fe+, Y+, Ag+, Xe+, Au+, and Pb+ ions respectivelyunder 200-V extraction voltage are further simulated, and it is revealed that the atomic mass of the ions is the key reason fordifferent ion density distributions when different kinds of ions are mixed and extracted, which provides support for furtherunderstanding of ion extraction characteristics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074295,12304271,and 12104420).
文摘The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.
基金financially supported by the National Natural Science Foundation of China(No.90814009)
文摘A three-dimensional crustal density model beneath North China is determined using P-wave traveltimes and gravity datum by sequential inversion method in this paper. To improve the uniqueness of the solution, we used a linear relationship between velocity and density to achieve mutual conversions and constraints between velocity difference and density difference. Algebraic reconstruction technique (ART) was used in density inversion, which highly improved the calculation speed comparing with common least squares method. The inversion results indicate that the crustal density beneath North China is extremely inhomogeneous with its distribution coherent with regional tectonics. The lower crust of Taihang mountain tectonic zone shows an obvious low density characteristic. We proposed that it may be an indicator of upwelling of mantle materials or partial melting of lowermost crust.
基金The project supported by the Natural Science Foundation of Guangdong province (No. 000675) the Key project tackled of Guangdong province (ZKM01401G)
文摘The ion density distribution in the reaction chamber was diagnosed by a Langmuir probe. The rules of the ion density distribution were obtained under the pressures of 9 Pa, 13 Pa, 27 Pa and 53 Pa in the reaction chamber, different radio-frequency powers and different positions. The result indicates that the ion density decreases as the pressure increases, and increases as the power decreases. The ion density of axial position z =0 achieves 5.8×1010 on the center of coil under the power of 200 w and pressure of 9 Pa in the reaction chamber.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
基金supported by the Natural Science Foundation of Jilin Province (No. 20220101017JC)the National Natural Science Foundation of China (Nos. 11675063, 11875070, and 11935001)+1 种基金Key Laboratory of Nuclear Data foundation (JCKY2020201C157)the Anhui Project (Z010118169)
文摘Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.
基金supported by the National Natural Science Foundation of China (22075029, 22179070, U1932220)。
文摘The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs.
基金Project(2021YFF0500200) supported by the National Key R&D Program of ChinaProject(52105437) supported by the National Natural Science Foundation of China+1 种基金Project(202006120184) supported by the Heilongjiang Provincial Postdoctoral Science Foundation,ChinaProject(LBH-Z20054) supported by the China Scholarship Council。
文摘The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.
文摘Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.
基金Project supported by the National Natural Science Foundation of China (Grant No 10035020).
文摘A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power
基金Beijing Natural Science Foundation,China(Grant No.Z190010)the National Key Research and Development Program of China(Grant No.2019YFA0308500)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)Key Research Projects of Frontier Science of Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC035)the National Natural Science Foundation of China(Grant Nos.51421002,51672307,51991344,52025025,and 52072400).
文摘Electron density plays an important role in determining the properties of functional materials.Revealing the electron density distribution experimentally in real space can help to tune the properties of materials.Spinel Li Mn2 O4 is one of the most promising cathode candidates because of its high voltage,low cost,and non-toxicity,but suffers severe capacity fading during electrochemical cycling due to the Mn dissolution.Real-space measurement of electron distribution of Li Mn2 O4 experimentally can provide direct evaluation on the strength of Mn–O bond and give an explanation of the structure stability.Here,through high energy synchrotron powder x-ray diffraction(SPXRD),accurate electron density distribution in spinel Li Mn2 O4 has been investigated based on the multipole model.The electron accumulation between Mn and O atoms in deformation density map indicates the shared interaction of Mn–O bond.The quantitative topological analysis at bond critical points shows that the Mn–O bond is relatively weak covalent interaction due to the oxygen loss.These findings suggest that oxygen stoichiometry is the key factor for preventing the Mn dissolution and capacity fading.
基金supported by the National Key Research and Development Program of China (2016YFC0400207)the National Natural Science Foundation of China (51222905, 51621061, 51509130)+2 种基金the Natural Science Foundation of Jiangsu Province, China (BK20150908)the Discipline Innovative Engineering Plan (111 Program, B14002)the Jiangsu Key Laboratory of Agricultural Meteorology Foundation (JKLAM1601)
文摘Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions.
基金supported by National Natural Science Foundation of China(Nos.11264036,11465016 and 11364038)
文摘We perform an experimental study of two-dimensional(2D) electron density profiles of the laser-induced plasma plumes in air by ordinarily laboratorial interferometry. The electron density distributions measured show a feature of hollow core. To illustrate the feature, we present a theoretical investigation by using dynamics analysis. In the simulation, the propagation of laser pulse with the evolution of electron density is utilized to evaluate ionization of air target for the plasma-formation stage. In the plasma-expansion stage, a simple adiabatic fluid dynamics is used to calculate the evolution of plasma outward expansion. The simulations show good agreements with experimental results, and demonstrate an effective way of determining 2D density profiles of the laser-induced plasma plume in gas.
基金Supported by the Young Science Foundation of China(50025411)the Doctoral Science Research Foundation of University(20030290015)
文摘Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity beneficiation, the gravity separating process complexly affected by many kinds of factors is actually carried out at a fluctuant density; namely, the practical separation density is essentially a random variable.The studied results show that the equal-errors cut point is the mathematical expectation of this random variable, and the distribution density corresponds to the highest separation efficiency in the gravity separation process.This shows that the distribution density is the best working point of the gravity separation equipment under a particular operating condition.Therefore,in order to fully develop the function of the gravity separation equipment, the distribution density should be close to the theoretical separation density unlimitedly in the range of minimum fluctuation.
基金Project supported by the National Natural Science Foundation of China (Grant No 20673150)
文摘In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a nonuniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail.
基金supported by National Natural Science Foundation of China under Grant Nos.10675048 and 1068006the Natural Science Foundation of Xianning College under Grant No.KZ0916
文摘By Monte Carlo simulations, the effect of the dispersion of particle size distribution on the spatial density distributions and correlations of a quasi one-dimensional polydisperse granular gas with fractal size distribution is investigated in the same inelasticity. The dispersive degree of the particle size distribution can be measured by a fractal dimension dr, and the smooth particles are constrained to move along a circle of length L, colliding inelastically with each other and thermalized by a viscosity heat bath. When the typical relaxation time τ of the driving Brownian process is longer than the mean collision time To, the system can reach a nonequilibrium steady state. The average energy of the system decays exponentially with time towards a stable asymptotic value, and the energy relaxation time τB to the steady state becomes shorter with increasing values of df. In the steady state, the spatial density distribution becomes more clusterized as df increases, which can be quantitatively characterized by statistical entropy of the system. Furthermore, the spatial correlation functions of density and velocities are found to be a power-law form for small separation distance of particles, and both of the correlations become stronger with the increase of df. Also, tile density clusterization is explained from the correlations.
文摘Propellant ionization in the Hall thruster discharge channel is a significant process and has strong influence on the thruster's efficiency. In this work, the functional relation has been established between the ionization density distribution and the function of the ion energy distribution through the basic equations governing the ion flow in the Hall thruster channel and the method achieved for reconstructing the ionization density distribution inside the channel by ordinary plasma diagnosis of the potential distribution and ion energy spectrum of the plasma jet. The ionization density distributions of single and double charged ions in an ATON-thruster channel have been reconstructed according to the experimental data of the potential distribution along the axis of the channel and the ion energy spectrum of the plasma jet. The agreement between the calculation and experimental results of the percentage of double charged ions proves the validity of our method achieved in this work.
文摘Periodical macro stripes have been found on diamond film prepared on a Si substrate by the multifilament chemical vapor deposition (CVD) method when the filament substrate distance is less than 2 mm. The properties of the stripe on the film were characterized qualitatively by a scanning electron microscope (SEM) and Raman scattering spectrometer. The measurement results show that this stripe corresponds to the different kinds of the microstructure and thickness of the film. Through calculation of the thermal radiation energy density distribution on the surface of substrate, this phenomenon can be explained successfully.