This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded ...This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
The design of a bidirectional dc-dc power converter specifically for a distributed energy application is presented. The existing two different DC voltage battery bank of the distributed generation needs to interlink e...The design of a bidirectional dc-dc power converter specifically for a distributed energy application is presented. The existing two different DC voltage battery bank of the distributed generation needs to interlink each other using a bi-directional dc-dc converter in order to minimize the unbalance of the output load currents of the three inverters connected to electric grid system. Through this connection, a current can flow from one system to another or vice versa depending on which systems need the current most. Thus, unbalanced currents of the grid line have been minimized and the reliability and performance of the DER grid connected system has been increased. A detailed mathematical analysis of the converter under steady state and transient condition are presented. Mathematical models for boost and buck modes are being derived and the simulink model is constructed in order to simulate the system. Moreover, the model has been validated on the actual operation of the converter, showing that the simulated results in Matlab Simulink are consistent with the experimental ones.展开更多
In the future smart cities,parking lots(PLs)can accommodate hundreds of electric vehicles(EVs)at the same time.This trend creates an opportunity for PLs to serve as a potential flexibility resource,considering growing...In the future smart cities,parking lots(PLs)can accommodate hundreds of electric vehicles(EVs)at the same time.This trend creates an opportunity for PLs to serve as a potential flexibility resource,considering growing penetration of EVs and integration of distributed energy resources DER(such as photovoltaic and energy storages).Given this background,this paper proposes a comprehensive evaluation framework to investigate the potential role of DER-integrated PLs(DPL)with the capability of vehicle-to-grid(V2G)in improving the reliability of the distribution network.For this aim,first,an overview for the distribution system with DPLs is provided.Then,a generic model for the available generation capacity(AGC)of DPLs with consideration of EV scheduling strategy is developed.On the above basis,an iterative-based algorithm leveraging sequential Monte Carlo simulation is presented to quantify the contribution of DPLs to the reliability of the system.In order to verify the effectiveness of the proposed method,a series of numerical studies are carried out.The simulation results show that the integration of DPLs with the V2G capability could help to improve the reliability performance of distribution grid to a great extent and reduce the adverse impact incurred by EV accommodation,if utilized properly.展开更多
As numerous distributed energy resources(DERs)are integrated into the distribution networks,the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks(ADNs).Since ac...As numerous distributed energy resources(DERs)are integrated into the distribution networks,the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks(ADNs).Since accurate models are usually unavailable in ADNs,an increasing number of reinforcement learning(RL)based methods have been proposed for the optimal dispatch problem.However,these RL based methods are typically formulated without safety guarantees,which hinders their application in real world.In this paper,we propose an RL based method called supervisor-projector-enhanced safe soft actor-critic(S3AC)for the optimal dispatch of DERs in ADNs,which not only minimizes the operational cost but also satisfies safety constraints during online execution.In the proposed S3AC,the data-driven supervisor and projector are pre-trained based on the historical data from supervisory control and data acquisition(SCADA)system,effectively providing enhanced safety for executed actions.Numerical studies on several IEEE test systems demonstrate the effectiveness and safety of the proposed S3AC.展开更多
To improve the controllability and utilization of distributed energy resources(DERs),distribution-level electricity markets based on consumers’bidding and offers have been proposed.However,the transaction costs will ...To improve the controllability and utilization of distributed energy resources(DERs),distribution-level electricity markets based on consumers’bidding and offers have been proposed.However,the transaction costs will dramatically increase with the rapid development of DERs.Therefore,in this paper,we develop an energy sharing scheme that allows users to share DERs with neighbors,and design a novel incentive mechanism for benefit allocation without users’bidding on electricity prices.In the energy sharing scheme,an aggregator organizes a number of electricity users,and trades with the connected power grid.The aggregator is aimed at minimizing the total costs by matching the surplus energy from DERs and electrical loads.A novel index,termed as sharing contribution rate(SCR),is presented to evaluate different users’contributions to the energy sharing.Then,based on users’SCRs,an efficient benefit allocation mechanism is implemented to determine the aggregator’s payment to users that incentivize their participation in energy sharing.To avoid users’bidding,we propose a decentralized framework for the energy sharing and incentive mechanism.Case studies based on real-world datasets demonstrate that the aggregator and users can benefit from the energy sharing scheme,and the incentive mechanism allocates the benefits according to users’contributions.展开更多
Power grids include entities such as home-microgrids(H-MGs),consumers,and retailers,each of which has a unique and sometimes contradictory objective compared with others while exchanging electricity and heat with othe...Power grids include entities such as home-microgrids(H-MGs),consumers,and retailers,each of which has a unique and sometimes contradictory objective compared with others while exchanging electricity and heat with other H-MGs.Therefore,there is the need for a smart structure to handle the new situation.This paper proposes a bilevel hierarchical structure for designing and planning distributed energy resources(DERs)and energy storage in H-MGs by considering the demand response(DR).In general,the upper-level structure is based on H-MG generation competition to maximize their individual and/or group income in the process of forming a coalition with other H-MGs.The upper-level problem is decomposed into a set of low-level market clearing problems.Both electricity and heat markets are simultaneously modeled in this paper.DERs,including wind turbines(WTs),combined heat and power(CHP)systems,electric boilers(EBs),electric heat pumps(EHPs),and electric energy storage systems,participate in the electricity markets.In addition,CHP systems,gas boilers(GBs),EBs,EHPs,solar thermal panels,and thermal energy storage systems participate in the heat market.Results show that the formation of a coalition among H-MGs present in one grid will not only have a significant effect on programming and regulating the value of the power generated by the generation resources,but also impact the demand consumption and behavior of consumers participating in the DR program with a cheaper market clearing price.展开更多
The penetration level of distributed energy resources(DERs)is increasing and has significant impact on the voltage stability of distribution networks.Based on the various types of DERs with distinct reactive power cha...The penetration level of distributed energy resources(DERs)is increasing and has significant impact on the voltage stability of distribution networks.Based on the various types of DERs with distinct reactive power characteristics(RPC),their different contributions to the system voltage stability require classification.Firstly,the features of DERs are reviewed and classified based on their RPC,to investigate different distributed generation technologies for reactive power support in distribution networks.Then,the concept of a relative available transmission capacity index(RATCI),which is based on power transfer margin of the power-voltage curve considering the non-negligible distribution network resistance,is proposed to quantify and evaluate the voltage stability by integrating DERs with the defined reactive power types.Case studies have been conducted for an IEEE 33-bus distribution network to calculate the system RATCI for the mixed integration of DERs.Results show that the multitype and multi-locational integration of DERs can improve the voltage stability of a distribution network.展开更多
This work presents a new approach to establishing the minimum requirements for anti-islanding protection of distributed energy resources(DERs)with focus on bulk power system stability.The proposed approach aims to avo...This work presents a new approach to establishing the minimum requirements for anti-islanding protection of distributed energy resources(DERs)with focus on bulk power system stability.The proposed approach aims to avoid cascade disconnection of DERs during major disturbances in the transmission network and to compromise as little as possible the detection of real islanding situations.The proposed approach concentrates on the rate-of-change of frequency(RoCoF)protection function and it is based on the assessment of dynamic security regions with the incorporation of a new and straightforward approach to represent the disconnection of DERs when analyzing the bulk power system stability.Initially,the impact of disconnection of DERs on the Brazilian Interconnected Power System(BIPS)stability is analyzed,highlighting the importance of modeling such disconnection in electromechanical stability studies,even considering low penetration levels of DERs.Then,the proposed approach is applied to the BIPS,evidencing its benefits when specifying the minimum requirements of anti-islanding protection,without overestimating them.展开更多
Local energy markets are emerging as a tool for coordinating generation, storage, and consumption of energyfrom distributed resources. In combination with automation, they promise to provide an effective energymanagem...Local energy markets are emerging as a tool for coordinating generation, storage, and consumption of energyfrom distributed resources. In combination with automation, they promise to provide an effective energymanagement framework that is fair and brings system-level savings. The cooperative–competitive natureof energy markets calls for multi-agent based automation with learning energy trading agents. However,depending on the dynamics of the agent–environment interaction, this approach may yield unintended behaviorof market participants. Thus, the design of market mechanisms suitable for reinforcement learning agentsmust take into account this interplay. This article introduces autonomous local energy exchange (ALEX) asan experimental framework that combines multi-agent learning and double auction mechanism. Participantsdetermine their internal price signals and make energy management decisions through market interactions,rather than relying on predetermined external price signals. The main contribution of this article is examinationof compatibility between specific market elements and independent learning agents. Effects of different marketproperties are evaluated through simulation experiments, and the results are used for determine a suitablemarket design. The results show that market truthfulness maintains demand-response functionality, while weakbudget balancing provides a strong reinforcement signal for the learning agents. The resulting agent behavioris compared with two baselines: net billing and time-of-use rates. The ALEX-based pricing is more responsiveto fluctuations in the community net load compared to the time-of-use. The more accurate accounting ofrenewable energy usage reduced bills by a median 38.8% compared to net billing, confirming the ability tobetter facilitate demand response.展开更多
This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to...This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.展开更多
基金supported by the National Science Foundation(NSF)under Award Number IIA-1355406.
文摘This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘The design of a bidirectional dc-dc power converter specifically for a distributed energy application is presented. The existing two different DC voltage battery bank of the distributed generation needs to interlink each other using a bi-directional dc-dc converter in order to minimize the unbalance of the output load currents of the three inverters connected to electric grid system. Through this connection, a current can flow from one system to another or vice versa depending on which systems need the current most. Thus, unbalanced currents of the grid line have been minimized and the reliability and performance of the DER grid connected system has been increased. A detailed mathematical analysis of the converter under steady state and transient condition are presented. Mathematical models for boost and buck modes are being derived and the simulink model is constructed in order to simulate the system. Moreover, the model has been validated on the actual operation of the converter, showing that the simulated results in Matlab Simulink are consistent with the experimental ones.
基金financially supported by the National Social Science Fund of China(No.19ZDA081)Fundamental Research Funds for the Central Universities(No.2020MS067).
文摘In the future smart cities,parking lots(PLs)can accommodate hundreds of electric vehicles(EVs)at the same time.This trend creates an opportunity for PLs to serve as a potential flexibility resource,considering growing penetration of EVs and integration of distributed energy resources DER(such as photovoltaic and energy storages).Given this background,this paper proposes a comprehensive evaluation framework to investigate the potential role of DER-integrated PLs(DPL)with the capability of vehicle-to-grid(V2G)in improving the reliability of the distribution network.For this aim,first,an overview for the distribution system with DPLs is provided.Then,a generic model for the available generation capacity(AGC)of DPLs with consideration of EV scheduling strategy is developed.On the above basis,an iterative-based algorithm leveraging sequential Monte Carlo simulation is presented to quantify the contribution of DPLs to the reliability of the system.In order to verify the effectiveness of the proposed method,a series of numerical studies are carried out.The simulation results show that the integration of DPLs with the V2G capability could help to improve the reliability performance of distribution grid to a great extent and reduce the adverse impact incurred by EV accommodation,if utilized properly.
基金supported in part by the National Key Research and Development Plan of China(No.2022YFB2402900)in part by the Science and Technology Project of State Grid Corporation of China“Key Techniques of Adaptive Grid Integration and Active Synchronization for Extremely High Penetration Distributed Photovoltaic Power Generation”(No.52060023001T)。
文摘As numerous distributed energy resources(DERs)are integrated into the distribution networks,the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks(ADNs).Since accurate models are usually unavailable in ADNs,an increasing number of reinforcement learning(RL)based methods have been proposed for the optimal dispatch problem.However,these RL based methods are typically formulated without safety guarantees,which hinders their application in real world.In this paper,we propose an RL based method called supervisor-projector-enhanced safe soft actor-critic(S3AC)for the optimal dispatch of DERs in ADNs,which not only minimizes the operational cost but also satisfies safety constraints during online execution.In the proposed S3AC,the data-driven supervisor and projector are pre-trained based on the historical data from supervisory control and data acquisition(SCADA)system,effectively providing enhanced safety for executed actions.Numerical studies on several IEEE test systems demonstrate the effectiveness and safety of the proposed S3AC.
基金supported by National Natural Science Foundation of China(No.51777102,No.51537005)Chinese Association of Science and Technology Young Elite Scientists Sponsorship Program(No.YESS20170206)the State Grid Corporation of China(No.5210EF18000G).
文摘To improve the controllability and utilization of distributed energy resources(DERs),distribution-level electricity markets based on consumers’bidding and offers have been proposed.However,the transaction costs will dramatically increase with the rapid development of DERs.Therefore,in this paper,we develop an energy sharing scheme that allows users to share DERs with neighbors,and design a novel incentive mechanism for benefit allocation without users’bidding on electricity prices.In the energy sharing scheme,an aggregator organizes a number of electricity users,and trades with the connected power grid.The aggregator is aimed at minimizing the total costs by matching the surplus energy from DERs and electrical loads.A novel index,termed as sharing contribution rate(SCR),is presented to evaluate different users’contributions to the energy sharing.Then,based on users’SCRs,an efficient benefit allocation mechanism is implemented to determine the aggregator’s payment to users that incentivize their participation in energy sharing.To avoid users’bidding,we propose a decentralized framework for the energy sharing and incentive mechanism.Case studies based on real-world datasets demonstrate that the aggregator and users can benefit from the energy sharing scheme,and the incentive mechanism allocates the benefits according to users’contributions.
基金funded partially by the National Science Foundation(NSF)(No.1917308)the British Council(No.IND/CONT/GA/18-19/22)
文摘Power grids include entities such as home-microgrids(H-MGs),consumers,and retailers,each of which has a unique and sometimes contradictory objective compared with others while exchanging electricity and heat with other H-MGs.Therefore,there is the need for a smart structure to handle the new situation.This paper proposes a bilevel hierarchical structure for designing and planning distributed energy resources(DERs)and energy storage in H-MGs by considering the demand response(DR).In general,the upper-level structure is based on H-MG generation competition to maximize their individual and/or group income in the process of forming a coalition with other H-MGs.The upper-level problem is decomposed into a set of low-level market clearing problems.Both electricity and heat markets are simultaneously modeled in this paper.DERs,including wind turbines(WTs),combined heat and power(CHP)systems,electric boilers(EBs),electric heat pumps(EHPs),and electric energy storage systems,participate in the electricity markets.In addition,CHP systems,gas boilers(GBs),EBs,EHPs,solar thermal panels,and thermal energy storage systems participate in the heat market.Results show that the formation of a coalition among H-MGs present in one grid will not only have a significant effect on programming and regulating the value of the power generated by the generation resources,but also impact the demand consumption and behavior of consumers participating in the DR program with a cheaper market clearing price.
基金supported by National Natural Science Foundation of China(No.51807127)the Fundamental Research Funds for the Central Universities of China(YJ201654)the Open Research Subject of Key Laboratory of Sichuan Power Electronics Energy-saving Technology and Devices(szjj2017-052).
文摘The penetration level of distributed energy resources(DERs)is increasing and has significant impact on the voltage stability of distribution networks.Based on the various types of DERs with distinct reactive power characteristics(RPC),their different contributions to the system voltage stability require classification.Firstly,the features of DERs are reviewed and classified based on their RPC,to investigate different distributed generation technologies for reactive power support in distribution networks.Then,the concept of a relative available transmission capacity index(RATCI),which is based on power transfer margin of the power-voltage curve considering the non-negligible distribution network resistance,is proposed to quantify and evaluate the voltage stability by integrating DERs with the defined reactive power types.Case studies have been conducted for an IEEE 33-bus distribution network to calculate the system RATCI for the mixed integration of DERs.Results show that the multitype and multi-locational integration of DERs can improve the voltage stability of a distribution network.
基金partially sponsored by CNPq,FAPERJ,and Coordenacao de Aperfeicoamento de Pessoal de Nível Superior-Brasil (CAPES)Finance Code 001。
文摘This work presents a new approach to establishing the minimum requirements for anti-islanding protection of distributed energy resources(DERs)with focus on bulk power system stability.The proposed approach aims to avoid cascade disconnection of DERs during major disturbances in the transmission network and to compromise as little as possible the detection of real islanding situations.The proposed approach concentrates on the rate-of-change of frequency(RoCoF)protection function and it is based on the assessment of dynamic security regions with the incorporation of a new and straightforward approach to represent the disconnection of DERs when analyzing the bulk power system stability.Initially,the impact of disconnection of DERs on the Brazilian Interconnected Power System(BIPS)stability is analyzed,highlighting the importance of modeling such disconnection in electromechanical stability studies,even considering low penetration levels of DERs.Then,the proposed approach is applied to the BIPS,evidencing its benefits when specifying the minimum requirements of anti-islanding protection,without overestimating them.
文摘Local energy markets are emerging as a tool for coordinating generation, storage, and consumption of energyfrom distributed resources. In combination with automation, they promise to provide an effective energymanagement framework that is fair and brings system-level savings. The cooperative–competitive natureof energy markets calls for multi-agent based automation with learning energy trading agents. However,depending on the dynamics of the agent–environment interaction, this approach may yield unintended behaviorof market participants. Thus, the design of market mechanisms suitable for reinforcement learning agentsmust take into account this interplay. This article introduces autonomous local energy exchange (ALEX) asan experimental framework that combines multi-agent learning and double auction mechanism. Participantsdetermine their internal price signals and make energy management decisions through market interactions,rather than relying on predetermined external price signals. The main contribution of this article is examinationof compatibility between specific market elements and independent learning agents. Effects of different marketproperties are evaluated through simulation experiments, and the results are used for determine a suitablemarket design. The results show that market truthfulness maintains demand-response functionality, while weakbudget balancing provides a strong reinforcement signal for the learning agents. The resulting agent behavioris compared with two baselines: net billing and time-of-use rates. The ALEX-based pricing is more responsiveto fluctuations in the community net load compared to the time-of-use. The more accurate accounting ofrenewable energy usage reduced bills by a median 38.8% compared to net billing, confirming the ability tobetter facilitate demand response.
文摘This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.