为实现孤岛微电网中不同尺寸(容量和电压)分布式储能单元(Distributed Energy Storage Units,DESUs)的荷电状态(State of Charge,SoC)均衡,提出一种基于P-ω下垂控制的改进型控制方案,在无需中央控制器和通信的前提下实现不同尺寸DESUs...为实现孤岛微电网中不同尺寸(容量和电压)分布式储能单元(Distributed Energy Storage Units,DESUs)的荷电状态(State of Charge,SoC)均衡,提出一种基于P-ω下垂控制的改进型控制方案,在无需中央控制器和通信的前提下实现不同尺寸DESUs的SoC均衡,延长DESUs的使用寿命。在分析传统下垂控制原理和SoC的基础上,阐明所提方案实现不同尺寸DESUs的SoC均衡机理。仿真和实验结果说明:所提方案能够消除尺寸参数差异对SoC均衡的影响,通过SoC均衡因子的调节实现不同负荷下不同尺寸DESUs的SoC均衡。展开更多
直流微电网孤岛运行状态下,由于分布式电源(distributed generation,DG)的不确定性,需要加入储能单元进行补充。对于传统下垂控制,线路阻抗差异造成输出电流无法精确分配,对储能单元荷电状态(state of charge,SOC)的均衡效果造成影响,...直流微电网孤岛运行状态下,由于分布式电源(distributed generation,DG)的不确定性,需要加入储能单元进行补充。对于传统下垂控制,线路阻抗差异造成输出电流无法精确分配,对储能单元荷电状态(state of charge,SOC)的均衡效果造成影响,且随着SOC的降低,收敛速度变慢,同时没有考虑DG波动对母线电压的影响。因此,提出一种改进下垂控制策略,通过计算输出电流偏差量,引入对电流偏差的积分环节,消除线路阻抗差异的影响,并且设计加速项和自适应变化的加速系数,提高了SOC均衡速度。当DG波动时调整输出电流增发量,满足负荷功率平衡,保持电压稳定。经过仿真验证,所提控制策略在考虑线路阻抗时的SOC收敛误差小于0.1%,收敛速度较对比方法提高20%,并且电压降落小于3%。展开更多
In the recent decade,a significant increase in the penetration level of renewable energy sources(RESs)into the distribution grid is evident due to the world’s shift towards clean energy and to increase the reliabilit...In the recent decade,a significant increase in the penetration level of renewable energy sources(RESs)into the distribution grid is evident due to the world’s shift towards clean energy and to increase the reliability or inboard manner resiliency of electrical distribution system.RES based microgrids are the most favorable option available,especially to enhance resiliency.However,the integration of RES over the distribution grid would hamper the grid stability due to its stochastic nature under normal conditions.During extreme weather conditions,RES behavior is completely uncertain.Hence there is a need to eliminate the adverse effects caused by the RES and make the distribution grid more reliable and stable under normal and resilient conditions.To address these issues,many researchers proposed several methods to place energy storage units(ESUs)and microgrids(RES integrated),which can support critical loads at an optimal location in the distribution system during normal and extreme conditions,respectively.The aim of this article is to consolidate and review the research towards various approaches to formulate the problem(optimal location,allocation,and operation of ESU and microgrids to face regular and extreme weather condition)and tools to solve it for enhanced system flexibility and resiliency.Based on the review,a generalized methodology has been designed to adapt the inputs and address both conditions.At the end of the review,future aspects for ESU to strengthen resistance and resiliency of its own are presented,which can be helpful to further improve the reliability and resiliency of the distribution system.展开更多
为充分利用分布式电池储能单元(Distributed Battery Energy Storage Units,DBESU)的自恢复效应,延长DBESU放电时间和提高DBESU容量利用率,提出一种计及自恢复效应的电池储能单元容量利用率提升策略。在DBESU工作在非连续模式放电场景下...为充分利用分布式电池储能单元(Distributed Battery Energy Storage Units,DBESU)的自恢复效应,延长DBESU放电时间和提高DBESU容量利用率,提出一种计及自恢复效应的电池储能单元容量利用率提升策略。在DBESU工作在非连续模式放电场景下,该策略可控制荷电状态(State-of-Charge,SOC)低的DBESU停机,利用自恢复效应进行SOC恢复;可控制SOC高的DBESU继续工作以便支持负荷及调压调频。该策略在提高孤岛微电网DBESU容量利用率的同时,延长了DBESU的放电时间。最后,不同方案的仿真对比结果验证了本研究方案的有效性和先进性。展开更多
文摘为实现孤岛微电网中不同尺寸(容量和电压)分布式储能单元(Distributed Energy Storage Units,DESUs)的荷电状态(State of Charge,SoC)均衡,提出一种基于P-ω下垂控制的改进型控制方案,在无需中央控制器和通信的前提下实现不同尺寸DESUs的SoC均衡,延长DESUs的使用寿命。在分析传统下垂控制原理和SoC的基础上,阐明所提方案实现不同尺寸DESUs的SoC均衡机理。仿真和实验结果说明:所提方案能够消除尺寸参数差异对SoC均衡的影响,通过SoC均衡因子的调节实现不同负荷下不同尺寸DESUs的SoC均衡。
文摘直流微电网孤岛运行状态下,由于分布式电源(distributed generation,DG)的不确定性,需要加入储能单元进行补充。对于传统下垂控制,线路阻抗差异造成输出电流无法精确分配,对储能单元荷电状态(state of charge,SOC)的均衡效果造成影响,且随着SOC的降低,收敛速度变慢,同时没有考虑DG波动对母线电压的影响。因此,提出一种改进下垂控制策略,通过计算输出电流偏差量,引入对电流偏差的积分环节,消除线路阻抗差异的影响,并且设计加速项和自适应变化的加速系数,提高了SOC均衡速度。当DG波动时调整输出电流增发量,满足负荷功率平衡,保持电压稳定。经过仿真验证,所提控制策略在考虑线路阻抗时的SOC收敛误差小于0.1%,收敛速度较对比方法提高20%,并且电压降落小于3%。
文摘In the recent decade,a significant increase in the penetration level of renewable energy sources(RESs)into the distribution grid is evident due to the world’s shift towards clean energy and to increase the reliability or inboard manner resiliency of electrical distribution system.RES based microgrids are the most favorable option available,especially to enhance resiliency.However,the integration of RES over the distribution grid would hamper the grid stability due to its stochastic nature under normal conditions.During extreme weather conditions,RES behavior is completely uncertain.Hence there is a need to eliminate the adverse effects caused by the RES and make the distribution grid more reliable and stable under normal and resilient conditions.To address these issues,many researchers proposed several methods to place energy storage units(ESUs)and microgrids(RES integrated),which can support critical loads at an optimal location in the distribution system during normal and extreme conditions,respectively.The aim of this article is to consolidate and review the research towards various approaches to formulate the problem(optimal location,allocation,and operation of ESU and microgrids to face regular and extreme weather condition)and tools to solve it for enhanced system flexibility and resiliency.Based on the review,a generalized methodology has been designed to adapt the inputs and address both conditions.At the end of the review,future aspects for ESU to strengthen resistance and resiliency of its own are presented,which can be helpful to further improve the reliability and resiliency of the distribution system.
文摘为充分利用分布式电池储能单元(Distributed Battery Energy Storage Units,DBESU)的自恢复效应,延长DBESU放电时间和提高DBESU容量利用率,提出一种计及自恢复效应的电池储能单元容量利用率提升策略。在DBESU工作在非连续模式放电场景下,该策略可控制荷电状态(State-of-Charge,SOC)低的DBESU停机,利用自恢复效应进行SOC恢复;可控制SOC高的DBESU继续工作以便支持负荷及调压调频。该策略在提高孤岛微电网DBESU容量利用率的同时,延长了DBESU的放电时间。最后,不同方案的仿真对比结果验证了本研究方案的有效性和先进性。