We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricate...We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
基金National Basic Research Program of China(2013CB632800)National Key Research and Development Program(2016YFB0402303)+2 种基金National Natural Science Foundation of China(NSFC)(61404131,61435014,61674144,61574136,61627822)Chinese Academy of Sciences Key Project(CAS Key Project)(QYZDJ-SSWJSC027,ZDRW-XH-2016-4)Natural Science Foundation of Beijing Municipality(4162060,4172060)
文摘We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.