期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
1
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage
2
作者 Yang Li Jianjun Zhao +2 位作者 Xiaolong Yang He Wang Yuyan Wang 《Energy Engineering》 EI 2024年第5期1263-1289,共27页
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of... Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method. 展开更多
关键词 Seasonal hydrogen storage flexible interconnection AC/DC distribution network photovoltaic absorption scheduling strategy
下载PDF
Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction Optimization Algorithm 被引量:1
3
作者 Jialei Li Xingsheng Gu +1 位作者 Yaya Zhang Xin Zhou 《Complex System Modeling and Simulation》 2022年第2期156-173,共18页
Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has bec... Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has become a research hot topic in the field of scheduling because its production is closer to reality.The research of DFJSP is of great significance to the organization and management of actual production process.To solve the heterogeneous DFJSP with minimal completion time,a hybrid chemical reaction optimization(HCRO)algorithm is proposed in this paper.Firstly,a novel encoding-decoding method for flexible manufacturing unit(FMU)is designed.Secondly,half of initial populations are generated by scheduling rule.Combined with the new solution acceptance method of simulated annealing(SA)algorithm,an improved method of critical-FMU is designed to improve the global and local search ability of the algorithm.Finally,the elitist selection strategy and the orthogonal experimental method are introduced to the algorithm to improve the convergence speed and optimize the algorithm parameters.In the experimental part,the effectiveness of the simulated annealing algorithm and the critical-FMU refinement methods is firstly verified.Secondly,in the comparison with other existing algorithms,the proposed optimal scheduling algorithm is not only effective in homogeneous FMUs examples,but also superior to existing algorithms in heterogeneous FMUs arithmetic cases. 展开更多
关键词 scheduling problem distributed flexible job-shop chemical reaction optimization algorithm heterogeneous factory simulated annealing algorithm
原文传递
FLEXIBLE JOB-SHOP SCHEDULING WITH FUZZY GOAL THROUGH IOCDGA 被引量:1
4
作者 袁坤 朱剑英 孙志峻 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期144-148,共5页
The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-objec... The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less. 展开更多
关键词 genetic algorithm flexible job-shop scheduling fuzzy goal
下载PDF
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
5
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
下载PDF
Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms 被引量:5
6
作者 I.A.Chaudhry S.Mahmood M.Shami 《Journal of Central South University》 SCIE EI CAS 2011年第5期1473-1486,共14页
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde... The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model. 展开更多
关键词 automated guided vehicles (AGVs) scheduling job-shop genetic algorithms flexible manufacturing system (FMS) SPREADSHEET
下载PDF
Improved gray wolf optimizer for distributed flexible job shop scheduling problem 被引量:8
7
作者 LI XinYu XIE Jin +2 位作者 MA QingJi GAO Liang LI PeiGen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第9期2105-2115,共11页
The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in th... The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in the manufacturing industries and comprises the following three subproblems:the assignment of jobs to factories,the scheduling of operations to machines,and the sequence of operations on machines.However,studies on DFJSP are seldom because of its difficulty.This paper proposes an effective improved gray wolf optimizer(IGWO)to solve the aforementioned problem.In this algorithm,new encoding and decoding schemes are designed to represent the three subproblems and transform the encoding into a feasible schedule,respectively.Four crossover operators are developed to expand the search space.A local search strategy with the concept of a critical factory is also proposed to improve the exploitability of IGWO.Effective schedules can be obtained by changing factory assignments and operation sequences in the critical factory.The proposed IGWO algorithm is evaluated on 69 famous benchmark instances and compared with six state-of-the-art algorithms to demonstrate its efficacy considering solution quality and computational efficiency.Experimental results show that the proposed algorithm has achieved good improvement.Particularly,the proposed IGWO updates the new upper bounds of 13 difficult benchmark instances. 展开更多
关键词 distributed and flexible job shop scheduling gray wolf optimizer critical factory
原文传递
Hybrid heuristic algorithm for multi-objective scheduling problem 被引量:3
8
作者 PENG Jian'gang LIU Mingzhou +1 位作者 ZHANG Xi LING Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期327-342,共16页
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object... This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP. 展开更多
关键词 flexible job-shop scheduling HARMONY SEARCH (HS) algorithm PARETO OPTIMALITY opposition-based learning
下载PDF
An Improved Genetic Algorithm for Solving the Mixed⁃Flow Job⁃Shop Scheduling Problem with Combined Processing Constraints 被引量:4
9
作者 ZHU Haihua ZHANG Yi +2 位作者 SUN Hongwei LIAO Liangchuang TANG Dunbing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期415-426,共12页
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.... The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness. 展开更多
关键词 mixed-flow production flexible job-shop scheduling problem(FJSP) genetic algorithm ENCODING
下载PDF
考虑序列相关准备时间的分布式柔性作业车间调度研究
10
作者 王有远 董博文 《工业工程》 2024年第3期78-86,共9页
针对考虑序列相关准备时间的分布式柔性作业车间调度问题,提出以最小化最大完工时间为优化目标的混合整数线性规划模型,并提出一种改进遗传算法。采用基于负荷均衡的种群初始化方法提高初始种群质量,根据问题特性构造6个局部扰动算子,... 针对考虑序列相关准备时间的分布式柔性作业车间调度问题,提出以最小化最大完工时间为优化目标的混合整数线性规划模型,并提出一种改进遗传算法。采用基于负荷均衡的种群初始化方法提高初始种群质量,根据问题特性构造6个局部扰动算子,设计多重局部扰动策略提高算法的局部搜索能力。通过扩展柔性作业车间调度基准生成测试算例,使用正交实验确定算法参数。实验结果表明,所提改进策略能够有效提高算法性能,求解结果优于对比算法,验证了调度模型和所提算法的可行性和有效性。 展开更多
关键词 分布式柔性作业车间调度 序列相关准备时间 遗传算法 最大完工时间
下载PDF
考虑双资源约束的分布式柔性作业车间调度
11
作者 张洪亮 陈毅 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第5期631-640,共10页
随着全球制造业的发展,分布式柔性作业车间调度问题(distributed flexible job shop scheduling problem, DFJSP)引起了学者们的关注.DFJSP的研究中常常忽略工人资源,作为生产的关键因素,有效利用工人资源可以提高生产率.研究了考虑双... 随着全球制造业的发展,分布式柔性作业车间调度问题(distributed flexible job shop scheduling problem, DFJSP)引起了学者们的关注.DFJSP的研究中常常忽略工人资源,作为生产的关键因素,有效利用工人资源可以提高生产率.研究了考虑双资源约束的分布式柔性作业车间调度问题(distributed flexible job shop scheduling problem with dual resource constraints, DFJSP-DRC),建立以最小化最大完工时间和总能耗为目标的数学模型,并提出一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithm, INSGA-Ⅱ)去求解.在INSGA-Ⅱ中,通过混合初始化策略生成高质量的初始解,并设计了一种基于加工机器和工人公共空闲时间的主动解码策略来获得调度方案.为增强INSGA-Ⅱ的全局搜索能力,提出了改进的交叉变异策略和自适应交叉变异率.通过在45个算例与三种算法的比较,验证了INSGA-Ⅱ解决DFJSP-DRC的有效性. 展开更多
关键词 分布式柔性作业车间调度 节能调度 双资源约束 多目标优化 非支配排序遗传算法 主动解码
下载PDF
带有动态到达工件的分布式柔性作业车间调度问题研究
12
作者 张洪亮 童超 丁倩兰 《安徽工业大学学报(自然科学版)》 CAS 2024年第5期573-582,共10页
分布式柔性作业车间调度是生产调度的1个重要分支,工件的动态到达作为实际生产中的1种常见扰动情况,进一步增加了作业车间调度问题的复杂性和不确定性。针对带有工件动态到达的分布式柔性作业车间调度问题(DA-DFJSP),提出1种分批调度策... 分布式柔性作业车间调度是生产调度的1个重要分支,工件的动态到达作为实际生产中的1种常见扰动情况,进一步增加了作业车间调度问题的复杂性和不确定性。针对带有工件动态到达的分布式柔性作业车间调度问题(DA-DFJSP),提出1种分批调度策略,将原本的动态调度问题转化成一系列连续调度区间上的静态调度问题,构建以最大完工时间为优化目标的混合整数规划模型;在此基础上,结合问题特征采用批次、工厂、工序、机器的4层染色体编码及快速贪婪搜索插入的解码方式改进遗传算法,同时引入多种交叉、变异算子来增强染色体的多样性;最后,基于FJSP标准算例构建DA-DFJSP测试算例进行仿真对比实验,验证所提策略和改进算法的求解优势。结果表明:相较于传统的重调度策略和改进前的遗传算法,采用分批调度策略和改进的遗传算法(IGA)所求调度方案具有更短的完工周期、更均匀的工厂加工负荷及更高的设备工作效率,IGA与分批调度策略之间有高度的契合性,能够有效提升生产效率。 展开更多
关键词 分布式柔性作业车间调度 工件动态到达 分批调度 染色体编码 遗传算法 混合整数规划模型 最大完工时间
下载PDF
考虑柔性资源多维价值标签的交直流配电网灵活调度 被引量:1
13
作者 李宗晟 张璐 +2 位作者 张志刚 娄铖伟 唐巍 《电工技术学报》 EI CSCD 北大核心 2024年第9期2621-2634,共14页
可再生能源高渗透率使得交直流配电网面临严重的随机性和波动性,充分挖掘柔性资源调控潜力可以有效地降低可再生能源带来的网络运行风险。针对当前交直流配电网优化调度主要考虑电压源型换流器(VSC)的调控能力,对VSC与柔性资源协同研究... 可再生能源高渗透率使得交直流配电网面临严重的随机性和波动性,充分挖掘柔性资源调控潜力可以有效地降低可再生能源带来的网络运行风险。针对当前交直流配电网优化调度主要考虑电压源型换流器(VSC)的调控能力,对VSC与柔性资源协同研究不足的问题,提出一种考虑柔性资源多维价值标签的交直流配电网灵活调度方法。首先,考虑柔性资源调控特性差异,构建了包含响应时段、调节能力、调节成本及响应意愿的多维价值标签评估体系,准确全面地评估柔性资源聚合调控潜力范围;其次,以运行成本最小为目标函数,柔性资源多维价值标签为约束,建立交直流配电网两阶段鲁棒日前优化调度模型,并采用嵌套列和约束生成算法(C&CG)及强对偶理论进行求解;最后,通过改进的IEEE 33节点交直流配电网仿真结果表明,所提方法能够充分发挥柔性资源的调控潜力和协同能力,同时可有效提高模型求解效率和求解精度。 展开更多
关键词 多维价值标签 交直流配电网 柔性资源 两阶段鲁棒优化调度 嵌套列和约束生成(C&CG)算法
下载PDF
配电台区灵活资源多时间尺度优化调度方法——以含虚拟储能的建筑微网为例
14
作者 黄旭 祖国强 +4 位作者 司威 丁琪 刘明阳 唐万鑫 靳小龙 《储能科学与技术》 CAS CSCD 北大核心 2024年第2期568-577,共10页
随着“双碳”目标的提出,配电台区接入大量分布式光伏、电动汽车、微网以及智能建筑等新元素,在给中低压配网安全运行带来挑战的同时也蕴含着巨大的灵活调节潜力。本工作以配电台区的智能建筑为例,提出一种含虚拟储能系统的建筑微网多... 随着“双碳”目标的提出,配电台区接入大量分布式光伏、电动汽车、微网以及智能建筑等新元素,在给中低压配网安全运行带来挑战的同时也蕴含着巨大的灵活调节潜力。本工作以配电台区的智能建筑为例,提出一种含虚拟储能系统的建筑微网多时间尺度优化调度方法。首先对建筑围护结构的动态特性进行建模,构建了对建筑灵活性进行定量描述的虚拟储能模型,通过对虚拟储能的充放电过程进行优化调度来实现对建筑灵活性的定量利用;随后,在配电台区灵活资源多时间尺度优化调度模型中详细考虑了建筑的可调虚拟储能特性,分别在日前调度和日间修正两个时间尺度对建筑虚拟储能进行充分利用,提出以运行成本最低为目标的日前经济调度方法和跟踪微网联络线设定值的日间修正方法。最后以夏季制冷场景为例,利用典型建筑微网系统验证了本文所提多时间尺度优化调度方法的有效性。结果表明,本文所提方法可有效调度建筑的虚拟储能能力,实现在日前运行阶段降低建筑微网的运行成本,在日间运行阶段有效平抑可再生能源的随机波动。 展开更多
关键词 配电台区 灵活资源 建筑虚拟储能 多时间尺度优化
下载PDF
基于遗传算法的家电智能生产线分布式资源调度算法设计
15
作者 张殷晨 左鹏奇 +3 位作者 王逸飞 林楠 谢润 金立军 《现代制造工程》 CSCD 北大核心 2024年第5期31-38,共8页
目前家电智能生产线存在多任务操作冲突、调度控制响应时间长以及制造资源利用率低等问题。为了实现家电智能生产线的合理资源调度,基于多目标优化和分布式资源调度理论,建立了家电智能生产线分布式资源调度模型,提出了基于遗传算法的... 目前家电智能生产线存在多任务操作冲突、调度控制响应时间长以及制造资源利用率低等问题。为了实现家电智能生产线的合理资源调度,基于多目标优化和分布式资源调度理论,建立了家电智能生产线分布式资源调度模型,提出了基于遗传算法的家电智能生产线分布式资源调度算法。仿真实验表明,与传统生产线调度方法相比,所提出的分布式资源调度算法最大完工时间缩短了5.76%,解的适应度提高了8%,验证了算法的可行性和高效性。 展开更多
关键词 分布式资源调度 多目标优化 柔性调度 遗传算法
下载PDF
改进松鼠搜索算法求解分布式节能柔性调度
16
作者 曾亮 石俊洋 +1 位作者 王珊珊 李维刚 《计算机应用研究》 CSCD 北大核心 2024年第3期848-853,共6页
为了优化同时考虑最大完工时间和机器能耗的双目标分布式柔性作业车间调度问题,提出了一种改进的多目标松鼠搜索算法。引入了基于升序排列规则的转换机制,实现了松鼠位置向量与调度解之间的转换,并针对机器空闲时间设计了从半主动到主... 为了优化同时考虑最大完工时间和机器能耗的双目标分布式柔性作业车间调度问题,提出了一种改进的多目标松鼠搜索算法。引入了基于升序排列规则的转换机制,实现了松鼠位置向量与调度解之间的转换,并针对机器空闲时间设计了从半主动到主动的解码策略。针对不同优化目标设计了三种种群初始化策略。同时提出了动态捕食者策略来更好地协调算法的全局探索和局部开发能力。设计了四种领域搜索策略用于增加种群多样。20个实例上的实验结果验证了改进后的算法求得解的质量和多样性更好,从而证明了其可有效求解分布式节能柔性调度问题。 展开更多
关键词 松鼠搜索算法 分布式柔性车间调度 节能调度 多目标优化 优化算法
下载PDF
考虑工件运输时间的分布式柔性作业车间调度
17
作者 余佳林 姚锡凡 +1 位作者 单文俊 王桂茂 《组合机床与自动化加工技术》 北大核心 2024年第6期185-192,共8页
为求解考虑工件在机器间运输时间的分布式柔性作业车间调度问题(DFJSPTW),提出了一种基于延迟接受爬山算法(LAHC)的改进算法,并建立起以最大完工时间为优化目标的数学模型。针对DFJSPTW的几个耦合性子问题,工序排序和机器选择、工厂分... 为求解考虑工件在机器间运输时间的分布式柔性作业车间调度问题(DFJSPTW),提出了一种基于延迟接受爬山算法(LAHC)的改进算法,并建立起以最大完工时间为优化目标的数学模型。针对DFJSPTW的几个耦合性子问题,工序排序和机器选择、工厂分配采用了基于工序、机器、工厂的三层染色体编码方式去解决,而小车分配则提出了一种考虑负载均衡化的调度规则;为提高生成解的质量,初始化染色体时工厂和机器序列分别考虑了负载平衡;局部搜索过程中,算法设计了4种邻域搜索算子并提出了一种符合DFJSPTW的变邻域搜索策略,在变换邻域搜索算子时还引入了化学反应算法中的单分子反应搜索机制,用于加强算法的综合搜索能力。通过数值实验验证了变邻域搜索策略和引入单分子反应搜索机制的有效性,同时通过改进算法与GA_OP、GA_JS算法的对比实验,进一步验证了所提算法求解DFJSPTW问题的优越性。 展开更多
关键词 柔性作业车间调度问题 分布式调度 工件运输时间 单目标优化
下载PDF
基于适应度分析的AGA求解柔性Job-shop调度问题 被引量:1
18
作者 潘颖 孙伟 张文孝 《组合机床与自动化加工技术》 北大核心 2010年第6期101-104,共4页
针对柔性作业车间调度问题(FJSP)求解过程中具有的阶段性特点和遗传算法(GA)自身的演进特性,结合目前求解FJSP的GA所存在的问题,文中提出一种基于适应度值及其分布进行调整的自适应遗传算法(AGA)。在分析传统GA求解FJSP过程中各典型阶... 针对柔性作业车间调度问题(FJSP)求解过程中具有的阶段性特点和遗传算法(GA)自身的演进特性,结合目前求解FJSP的GA所存在的问题,文中提出一种基于适应度值及其分布进行调整的自适应遗传算法(AGA)。在分析传统GA求解FJSP过程中各典型阶段的适应度分布特点基础上,提取适应度分布范围W和最优值所占比例F作为识别、区分各阶段的表征性参数。并结合各阶段特点提出合理的参数设置。实例证明该算法求解加速了收敛过程,提高了搜索效率,在避免陷入局部最优的同时提高了求解精度。 展开更多
关键词 柔性作业车间调度(FJSP) 自适应遗传算法(AGA) 适应度分布
下载PDF
基于柯西游走的改进灰狼算法求解FJSP
19
作者 齐娅惠 田云娜 +2 位作者 田园 何雨欣 韩小颖 《延安大学学报(自然科学版)》 2024年第1期64-71,共8页
为了提高生产资源的利用率和调度效率,提出了一种基于柯西游走的灰狼优化算法,将其应用于求解柔性作业车间调度问题(FJSP)。在经典灰狼算法的基础上,加入柯西游走策略跳出局部最优;引入非线性收敛因子a控制算法的广度搜索与深度搜索程度... 为了提高生产资源的利用率和调度效率,提出了一种基于柯西游走的灰狼优化算法,将其应用于求解柔性作业车间调度问题(FJSP)。在经典灰狼算法的基础上,加入柯西游走策略跳出局部最优;引入非线性收敛因子a控制算法的广度搜索与深度搜索程度;采用混合生成新解的种群更新策略适当增强种群多样性。通过在不同规模的测试用例上进行仿真实验和分析比较,实验结果表明,基于柯西游走的灰狼算法寻优性能稳定,在平衡算法的全局搜索和局部搜索程度方面表现较为出色。 展开更多
关键词 灰狼优化算法 柯西分布 非线性收敛 柔性作业车间调度
下载PDF
A hybrid genetic algorithm for multi-objective flexible job shop scheduling problem considering transportation time 被引量:8
20
作者 Xiabao Huang Lixi Yang 《International Journal of Intelligent Computing and Cybernetics》 EI 2019年第2期154-174,共21页
Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of th... Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem(MOFJSP)considering transportation time.Design/methodology/approach–A hybrid genetic algorithm(GA)approach is integrated with simulated annealing to solve the MOFJSP considering transportation time,and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.Findings–The performance of the proposed algorithm is tested on different MOFJSP taken from literature.Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution,especially when the number of jobs and the flexibility of the machine increase.Originality/value–Most of existing studies have not considered the transportation time during scheduling of jobs.The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs.Meanwhile,GA is one of primary algorithms extensively used to address MOFJSP in literature.However,to solve the MOFJSP,the original GA has a possibility to get a premature convergence and it has a slow convergence speed.To overcome these problems,a new hybrid GA is developed in this paper. 展开更多
关键词 flexible job-shop scheduling problem Transportation time Genetic algorithm Simulated annealing Multi-objective optimization
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部