To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we inv...To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we investigate the DPFSP by minimizing a makespan criterion under the constraint of sequence-dependent setup times.To solve DPFSPs,significant developments of some metaheuristic algorithms are necessary.In this context,a simple and effective improved iterated greedy(NIG)algorithm is proposed to minimize makespan in DPFSPs.According to the features of DPFSPs,a two-stage local search based on single job swapping and job block swapping within the key factory is designed in the proposed algorithm.We compare the proposed algorithm with state-of-the-art algorithms,including the iterative greedy algorithm(2019),iterative greedy proposed by Ruiz and Pan(2019),discrete differential evolution algorithm(2018),discrete artificial bee colony(2018),and artificial chemical reaction optimization(2017).Simulation results show that NIG outperforms the compared algorithms.展开更多
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con...To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution.展开更多
This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a com...This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm(CCSPEA)which contains the following features:1)An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence.2)A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution.3)A competitive selection is designed which divides the population into a winner and a loser swarms based on the comprehensive metric.4)A cooperative evolutionary schema is proposed for winner and loser swarms to accelerate the convergence of global search.5)Five local search strategies based on problem knowledge are designed to improve convergence.6)Aproblem-based energy-saving strategy is presented to reduce TEC.Finally,to evaluate the performance of CCSPEA,it is compared to four state-of-art and run on 22 instances based on the Taillard benchmark.The numerical experiment results demonstrate that 1)the proposed comprehensive metric can efficiently represent the heuristic information of each solution to help the later step divide the population.2)The global search based on the competitive and cooperative schema can accelerate loser solutions convergence and further improve the winner’s exploration.3)The problembased initialization,local search,and energy-saving strategies can efficiently reduce the makespan and TEC.4)The proposed CCSPEA is superior to the state-of-art for solving DHPFSP.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
This paper considers the impact of setup time in production scheduling and proposes energy-aware distributed hybrid flow shop scheduling problem with sequence-dependent setup time(EADHFSP-ST)that simultaneously optimi...This paper considers the impact of setup time in production scheduling and proposes energy-aware distributed hybrid flow shop scheduling problem with sequence-dependent setup time(EADHFSP-ST)that simultaneously optimizes the makespan and the energy consumption.We develop a mixed integer linear programming model to describe this problem and present a two-stage adaptive memetic algorithm(TAMA)with a surprisingly popular mechanism.First,a hybrid initialization strategy is designed based on the two optimization objectives to ensure the convergence and diversity of solutions.Second,multiple population co-evolutionary approaches are proposed for global search to escape from traditional cross-randomization and to balance exploration and exploitation.Third,considering that the memetic algorithm(MA)framework is less efficient due to the randomness in the selection of local search operators,TAMA is proposed to balance the local and global searches.The first stage accumulates more experience for updating the surprisingly popular algorithm(SPA)model to guide the second stage operator selection and ensures population convergence.The second stage gets rid of local optimization and designs an elite archive to ensure population diversity.Fourth,five problem-specific operators are designed,and non-critical path deceleration and right-shift strategies are designed for energy efficiency.Finally,to evaluate the performance of the proposed algorithm,multiple experiments are performed on a benchmark with 45 instances.The experimental results show that the proposed TAMA can solve the problem effectively.展开更多
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons...This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.展开更多
The distributed hybrid flow shop scheduling problem(DHFSP),which integrates distributed manufacturing models with parallel machines,has gained significant attention.However,in actual scheduling,some adjacent machines ...The distributed hybrid flow shop scheduling problem(DHFSP),which integrates distributed manufacturing models with parallel machines,has gained significant attention.However,in actual scheduling,some adjacent machines do not have buffers between them,resulting in blocking.This paper focuses on addressing the DHFSP with blocking constraints(DBHFSP)based on the actual production conditions.To solve DBHFSP,we construct a mixed integer linear programming(MILP)model for DBHFSP and validate its correctness using the Gurobi solver.Then,an advanced iterated greedy(AIG)algorithm is designed to minimize the makespan,in which we modify the Nawaz,Enscore,and Ham(NEH)heuristic to solve blocking constraints.To balance the global and local search capabilities of AIG,two effective inter-factory neighborhood search strategies and a swap-based local search strategy are designed.Additionally,each factory is mutually independent,and the movement within one factory does not affect the others.In view of this,we specifically designed a memory-based decoding method for insertion operations to reduce the computation time of the objective.Finally,two shaking strategies are incorporated into the algorithm to mitigate premature convergence.Five advanced algorithms are used to conduct comparative experiments with AIG on 80 test instances,and experimental results illustrate that the makespan and the relative percentage increase(RPI)obtained by AIG are 1.0%and 86.1%,respectively,better than the comparative algorithms.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(Nos.61803192,61973203,61966012,61773192,61603169,61773246,and 71533001)Thanks for the support of Shandong province colleges and universities youth innovation talent introduction and education program.
文摘To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we investigate the DPFSP by minimizing a makespan criterion under the constraint of sequence-dependent setup times.To solve DPFSPs,significant developments of some metaheuristic algorithms are necessary.In this context,a simple and effective improved iterated greedy(NIG)algorithm is proposed to minimize makespan in DPFSPs.According to the features of DPFSPs,a two-stage local search based on single job swapping and job block swapping within the key factory is designed in the proposed algorithm.We compare the proposed algorithm with state-of-the-art algorithms,including the iterative greedy algorithm(2019),iterative greedy proposed by Ruiz and Pan(2019),discrete differential evolution algorithm(2018),discrete artificial bee colony(2018),and artificial chemical reaction optimization(2017).Simulation results show that NIG outperforms the compared algorithms.
文摘To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution.
基金supported by the National Natural Science Foundation of China under Grant Nos.62076225 and 62122093the Open Project of Xiangjiang Laboratory under Grant No 22XJ02003.
文摘This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm(CCSPEA)which contains the following features:1)An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence.2)A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution.3)A competitive selection is designed which divides the population into a winner and a loser swarms based on the comprehensive metric.4)A cooperative evolutionary schema is proposed for winner and loser swarms to accelerate the convergence of global search.5)Five local search strategies based on problem knowledge are designed to improve convergence.6)Aproblem-based energy-saving strategy is presented to reduce TEC.Finally,to evaluate the performance of CCSPEA,it is compared to four state-of-art and run on 22 instances based on the Taillard benchmark.The numerical experiment results demonstrate that 1)the proposed comprehensive metric can efficiently represent the heuristic information of each solution to help the later step divide the population.2)The global search based on the competitive and cooperative schema can accelerate loser solutions convergence and further improve the winner’s exploration.3)The problembased initialization,local search,and energy-saving strategies can efficiently reduce the makespan and TEC.4)The proposed CCSPEA is superior to the state-of-art for solving DHPFSP.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金supported by the National Natural Science Foundation of China(No.62076225).
文摘This paper considers the impact of setup time in production scheduling and proposes energy-aware distributed hybrid flow shop scheduling problem with sequence-dependent setup time(EADHFSP-ST)that simultaneously optimizes the makespan and the energy consumption.We develop a mixed integer linear programming model to describe this problem and present a two-stage adaptive memetic algorithm(TAMA)with a surprisingly popular mechanism.First,a hybrid initialization strategy is designed based on the two optimization objectives to ensure the convergence and diversity of solutions.Second,multiple population co-evolutionary approaches are proposed for global search to escape from traditional cross-randomization and to balance exploration and exploitation.Third,considering that the memetic algorithm(MA)framework is less efficient due to the randomness in the selection of local search operators,TAMA is proposed to balance the local and global searches.The first stage accumulates more experience for updating the surprisingly popular algorithm(SPA)model to guide the second stage operator selection and ensures population convergence.The second stage gets rid of local optimization and designs an elite archive to ensure population diversity.Fourth,five problem-specific operators are designed,and non-critical path deceleration and right-shift strategies are designed for energy efficiency.Finally,to evaluate the performance of the proposed algorithm,multiple experiments are performed on a benchmark with 45 instances.The experimental results show that the proposed TAMA can solve the problem effectively.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.61525304)the National Natural Science Foundation of China(No.61873328)。
文摘This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.
基金This work was jointly supported by the National Natural Science Foundation of Shandong Province(No.ZR2023MF022)National Natural Science Foundation of China(Nos.61973203,62173216,and 62173356)Guangyue Youth Scholar Innovation Talent Program Support from Liaocheng University(No.LCUGYTD2022-03).
文摘The distributed hybrid flow shop scheduling problem(DHFSP),which integrates distributed manufacturing models with parallel machines,has gained significant attention.However,in actual scheduling,some adjacent machines do not have buffers between them,resulting in blocking.This paper focuses on addressing the DHFSP with blocking constraints(DBHFSP)based on the actual production conditions.To solve DBHFSP,we construct a mixed integer linear programming(MILP)model for DBHFSP and validate its correctness using the Gurobi solver.Then,an advanced iterated greedy(AIG)algorithm is designed to minimize the makespan,in which we modify the Nawaz,Enscore,and Ham(NEH)heuristic to solve blocking constraints.To balance the global and local search capabilities of AIG,two effective inter-factory neighborhood search strategies and a swap-based local search strategy are designed.Additionally,each factory is mutually independent,and the movement within one factory does not affect the others.In view of this,we specifically designed a memory-based decoding method for insertion operations to reduce the computation time of the objective.Finally,two shaking strategies are incorporated into the algorithm to mitigate premature convergence.Five advanced algorithms are used to conduct comparative experiments with AIG on 80 test instances,and experimental results illustrate that the makespan and the relative percentage increase(RPI)obtained by AIG are 1.0%and 86.1%,respectively,better than the comparative algorithms.