Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reli...Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reliability value of a photovoltaic(PV)energy system with a battery storage system(BSS)by considering the probability of grid outages causing household blackouts.Considering this reliability value,which is the economic profit and capital cost of PV+BSS,a simple formula is derived to calculate the optimal planning strategy.This strategy can provide household-level customers with a simple and straightforward expression for invested PV+BSS capacity.Case studies on 600 households located in eight zones of the US for the period of 2006 to 2015 demonstrate that adding the reliability value to economic profit allows households to invest in a larger PV+BSS and avoid loss of load caused by blackouts.Owing to the differences in blackout hours,households from the 8 zones express distinct willingness to install PV+BSS.The greater the probability of blackout,the greater revenue that household can get from the PV+BSS.The simulation example shows that the planning strategy obtained by proposed model has good economy in the actual operation and able to reduce the economic risk of power failure of the household users.This model can provide household with an easy and straightforward investment strategy of PV+BSS capacity.展开更多
With an increasing integration of intermittent distributed energy resources(DERs),the consequent voltage excursion and thermal overloading issues limit the self-sufficiency of distribution networks(DNs).The concept of...With an increasing integration of intermittent distributed energy resources(DERs),the consequent voltage excursion and thermal overloading issues limit the self-sufficiency of distribution networks(DNs).The concept of soft open point(SOP)has been proposed as a promising solution to improve the hosting capacity of DNs.In this paper,considering the ability of building thermal storage(BTS)to increase the penetration of renewable energy in DNs,we provide an optimal planning framework for SOP and DER.The optimal planning model is aimed at minimizing the investment and operational costs while respecting various constraints,including the self-sufficiency requirement of the DN,SOP,building thermal storage capacity and DER operations,etc.A steady-state SOP model is formulated and linearized to be incorporated into the planning framework.To make full use of the BTS flexibility provided by ubiquitous buildings,a differential equation model for building thermal dynamics is formulated.A hybrid stochastic/robust optimization approach is adopted to depict the uncertainties in renewable energy and market prices.IEEE 33-bus feeder and a realistic DN in the metropolitan area of Caracas are tested to validate the effectiveness of the proposed framework and method.Case studies show that SOP/BTS plays a complementary and coordinated coupling role in the thermo-electric system,thereby effectively improving the hosting capacity and self-sufficiency of DNs.展开更多
基金supported by National Natural Science Foundation of China(Project 51907064)in part by China State Key Lab.of Power System(SKLD19KM09)in part by State Grid Corporation of China(1400202024222A-0-0-00)
文摘Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reliability value of a photovoltaic(PV)energy system with a battery storage system(BSS)by considering the probability of grid outages causing household blackouts.Considering this reliability value,which is the economic profit and capital cost of PV+BSS,a simple formula is derived to calculate the optimal planning strategy.This strategy can provide household-level customers with a simple and straightforward expression for invested PV+BSS capacity.Case studies on 600 households located in eight zones of the US for the period of 2006 to 2015 demonstrate that adding the reliability value to economic profit allows households to invest in a larger PV+BSS and avoid loss of load caused by blackouts.Owing to the differences in blackout hours,households from the 8 zones express distinct willingness to install PV+BSS.The greater the probability of blackout,the greater revenue that household can get from the PV+BSS.The simulation example shows that the planning strategy obtained by proposed model has good economy in the actual operation and able to reduce the economic risk of power failure of the household users.This model can provide household with an easy and straightforward investment strategy of PV+BSS capacity.
基金This work was supported in part by the Smart Grid Joint Foundation Program of National Science Foundation of China and State Grid Corporation of China(No.U1966204)in part by National Natural Science Foundation of China(No.51907064)。
文摘With an increasing integration of intermittent distributed energy resources(DERs),the consequent voltage excursion and thermal overloading issues limit the self-sufficiency of distribution networks(DNs).The concept of soft open point(SOP)has been proposed as a promising solution to improve the hosting capacity of DNs.In this paper,considering the ability of building thermal storage(BTS)to increase the penetration of renewable energy in DNs,we provide an optimal planning framework for SOP and DER.The optimal planning model is aimed at minimizing the investment and operational costs while respecting various constraints,including the self-sufficiency requirement of the DN,SOP,building thermal storage capacity and DER operations,etc.A steady-state SOP model is formulated and linearized to be incorporated into the planning framework.To make full use of the BTS flexibility provided by ubiquitous buildings,a differential equation model for building thermal dynamics is formulated.A hybrid stochastic/robust optimization approach is adopted to depict the uncertainties in renewable energy and market prices.IEEE 33-bus feeder and a realistic DN in the metropolitan area of Caracas are tested to validate the effectiveness of the proposed framework and method.Case studies show that SOP/BTS plays a complementary and coordinated coupling role in the thermo-electric system,thereby effectively improving the hosting capacity and self-sufficiency of DNs.