In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration pr...In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared.展开更多
The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where...The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where a control method needing no current sensors or compensator elements is applied to the distribute generation system in the islanded mode.This control method has two main loops in each phase.The first loop controls the voltage control loops that adjust the three-phase point of common coupling,the amplitude of the non-sinusoidal reference waveform and the near-state pulse width modulation(NSPWM)method.The next loop compensates the harmonic compensator loop that calculates the voltage harmonics of the point of common coupling in each phase,and injects them to compensate the non-sinusoidal reference waveforms of each phase.The simulation results in MATLAB/SIMULINK show that this method can generate balanced threephase sinusoidal voltage with an acceptable total harmonic distortion(THD)at the joint connection point.展开更多
Nowadays, renewable energy resources play an important role in replacing conventional energy resources such as fossil fuel by integrating solar, wind and geothermal energy. Photovoltaic energy is one?of?the very promi...Nowadays, renewable energy resources play an important role in replacing conventional energy resources such as fossil fuel by integrating solar, wind and geothermal energy. Photovoltaic energy is one?of?the very promising renewable energy resources which grew rapidly in the past few years, it can be used to produce electric energy through photovoltaic process. The primary objective of the research proposed in this paper is to facilitate the increasing penetration levels of PV systems in the electric distribution networks. In this work, the PV module electrical model is presented based on the mathematical equations and was implemented on MATLAB to simulate the non-linear characteristics I-V and P-V curves with variable input parameters which are irradiance and temperature based on Riyadh region. In addition, the reliability evaluation of distribution networks, including distributed generators of solar photovoltaic (PV) with varying output power capacity is presented also. The Monte Carlo simulation algorithm is applied to test the distribution network which is RBTS Bus 2 and the same has been conducted on the original case of distribution network substation 7029 which is located at KSA Riyadh. The two distribution networks have been modified to include the PV’s distributed generators. The distributed generators contribute to supply a part of the load during normal mode and supply the entire load during component failure or failure of grid operation supply. The PV stochastic models have been used to simulate the randomness of these resources. Moreover, the study shows that the implementation and integration of renewable resources as distributed generations have improved the reliability of the distribution networks.展开更多
A microgrid is associated with a low voltage distribution power network and inherits small modular generation systems and loads that have certain coordinated functions to provide the solution to supply premium power t...A microgrid is associated with a low voltage distribution power network and inherits small modular generation systems and loads that have certain coordinated functions to provide the solution to supply premium power to remote or specific areas. Similar to conventional power systems, the energy management of distributed generation resources (DERs) is carried out to minimize the operation cost and maximize benefit of installation of DERS in a microgrid. This paper presents the process of implementing the short-term DER scheduling function for a dc microgrid. The optimal scheduling results for two operation modes are then reported.展开更多
Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced ...Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.展开更多
With the rapid integration of distributed energy resources(DERs),distribution utilities are faced with new and unprecedented issues.New challenges introduced by high penetra-tion of DERs range from poor observability ...With the rapid integration of distributed energy resources(DERs),distribution utilities are faced with new and unprecedented issues.New challenges introduced by high penetra-tion of DERs range from poor observability to overload and reverse power flow problems,under-/over-voltages,maloperation of legacy protection systems,and requirements for new planning procedures.Distribution utility personnel are not adequately trained,and legacy control centers are not properly equipped to cope with these issues.Fortunately,distribution energy resource management systems(DERMSs)are emerging software technologies aimed to provide distribution system operators(DSOs)with a specialized set of tools to enable them to overcome the issues caused by DERs and to maximize the benefits of the presence of high penetration of these novel resources.However,as DERMS technology is still emerging,its definition is vague and can refer to very different levels of software hierarchies,spanning from decentralized virtual power plants to DER aggregators and fully centralized enterprise systems(called utility DERMS).Although they are all frequently simply called DERIMS,these software technologies have different sets of tools and aim to provide different services to different stakeholders.This paper explores how these different software technologies can complement each other,and how they can provide significant benefits to DSOs in enabling them to successfully manage evolving distribution networks with high penetration of DERs when they are integrated together into the control centers of distribution utilities.展开更多
Renewable energy based distributed generation(DG) has the potential to reach high penetration levels in the residential region. However, its integration at the demand side will cause rapid power fluctuations of the ti...Renewable energy based distributed generation(DG) has the potential to reach high penetration levels in the residential region. However, its integration at the demand side will cause rapid power fluctuations of the tieline in the residential region. The traditional generators are generally difficult to manage rapid power fluctuations due to their insufficient efficiency requirements and low responding speed. With an effective control strategy, the demand side resources(DSRs) including DGs, electric vehicles and thermostatically-controlled loads at thedemand side, are able to serve as the energy storage system to smooth the load fluctuations. However, it is a challenge to properly model different types of DSRs. To solve this problem, a unified state model is first developed to describe the characteristics of different DSRs. Then a load curve smoothing strategy is proposed to offset the load fluctuations of the tie-line of the residential region, where a control matrix deduced from the unified state model is introduced to manage the power outputs of different DSRs,considering the response order and the comfort levels.Finally, a residential region with households is used to validate the load curve smoothing strategy based on the unified state model, and the results show that the power fluctuation rate of the tie-line is significantly decreased.Meanwhile, comparative study results are shown to demonstrate the advantages of the unified state model based load curve smoothing strategy.展开更多
Micro-grid plays a vital role in fulfilling the increasing demand by using distributed renewable energy resources. Demand and response technique can be broadly classified under the setup DR deployed (e.g. ISO’s/RTO’...Micro-grid plays a vital role in fulfilling the increasing demand by using distributed renewable energy resources. Demand and response technique can be broadly classified under the setup DR deployed (e.g. ISO’s/RTO’s). Demand response program can be implemented to improve power system quality, reliability and increasing demand. In modern power industry, strategic player can take more benefit from more emphasized DR study in terms of social benefit (uninterrupted power supply to consumers) and economy. This paper proposes the distributed micro-grid control and implemented control setup implemented demand response algorithm, which provides better power system reliability. This paper presents contingencies control demand and response for micro-grid. The main advantage of implementation of demand and response algorithms in Micro-grids provides reliable power supplies to consumers. The proposed micro-grid TCP/IP setup provides a chance to respond the contingencies to recover the shed to active condition. Micro-grid controller implements demand and response algorithm reasonable for managing the demand of the load and intelligent load scheme in case of blackout.展开更多
Customer satisfaction and participation in utility supply packages is the first and foremost factor in the success of any supplying agency whether wholesale or retail dealer. The paper presents the concept of major pr...Customer satisfaction and participation in utility supply packages is the first and foremost factor in the success of any supplying agency whether wholesale or retail dealer. The paper presents the concept of major prospects of non- autonomous micro-grids installed in a certain locality. The article shows the basic background that is required for the installment of micro grid in a particular area and discusses the primary factors or pre-requisites that are required for the existence and operation of micro-grids. It elaborate the major profitable applications and benefits that developing and developed states get by using micro-grids in an area where utility grid is already functioning .It also explains the basic improvement in the quality of supply from micro grid after its installment. It also throws light on afterwards impact on society with this system, such impacts include reliability, tariff rates, economics etc. The article discusses micro-grids as the future of modern power systems. This paper shows significance of modernization by latest topologies in power systems and its effect that will come afterwards.展开更多
The approach to planning,design and operation of distribution networks have significantly changed due to the proliferation of distributed energy resources(DERs)together with load growth,energy storage technology advan...The approach to planning,design and operation of distribution networks have significantly changed due to the proliferation of distributed energy resources(DERs)together with load growth,energy storage technology advancements and increased consumer expectations.Planning of active distribution systems(ADS)has been a very hot topic in the 21st Century.A large number of studies have been done on ADS planning.This paper reviews the state of the art of current ADS planning.Firstly,the influences of DERs on the ADS planning are addressed.Secondly,the characteristics and objectives of ADS planning are summarized.Then,up to date planning model and some related research are highlighted in different areas such as forecasting load and distributed generation,mathematical model of ADS planning and solution algorithms.Finally,the paper explores some directions of future research on ADS planning including planning collaboratively with all elements combined in ADS,taking into account of joint planning in secondary system,coordinating goals among different layers,integrating detailed operation simulations and regular performance based reviews into planning,and developing advanced planning tools.展开更多
The foremost issues of 21st century are challenging demand of electrical energy and to control the emission of Green House Gases(GHG)emissions.Renewable energy resources based sustainable microgrid emerges as one of t...The foremost issues of 21st century are challenging demand of electrical energy and to control the emission of Green House Gases(GHG)emissions.Renewable energy resources based sustainable microgrid emerges as one of the best feasible solution for future energy demand while considering zero carbon emission,fossil fuel independency,and enhanced reliability.In this paper,optimization and implementation of institutional based sustainable microgrid are discussed based on cost analysis,carbon emission,and availability of energy resources.Various microgrid topologies are considered for addressing the most ideal solution.The metrological data such as irradiance is acquired from solar satellite data of NASA(National Aero Space Agency)while the data for wind speed is taken from synergy enviro engineer’s site.HOMER®simulation tool is used for modelling and optimization purpose.展开更多
基金supported by The Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province(2018GGJS175:Research on Intelligent Power Management System).
文摘In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared.
基金International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universitéd’Excellence(LUE)in cooperation between Universitéde Lorraine and King Mongkut’s University of Technology North Bangkok and in part by the National Research Council of Thailand(NRCT)under Senior Research Scholar Program under Grant No.N42A640328National Science,Research and Innovation Fund(NSRF)under King Mongkut’s University of Technology North Bangkok under Grant No.KMUTNB-FF-65-20.
文摘The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where a control method needing no current sensors or compensator elements is applied to the distribute generation system in the islanded mode.This control method has two main loops in each phase.The first loop controls the voltage control loops that adjust the three-phase point of common coupling,the amplitude of the non-sinusoidal reference waveform and the near-state pulse width modulation(NSPWM)method.The next loop compensates the harmonic compensator loop that calculates the voltage harmonics of the point of common coupling in each phase,and injects them to compensate the non-sinusoidal reference waveforms of each phase.The simulation results in MATLAB/SIMULINK show that this method can generate balanced threephase sinusoidal voltage with an acceptable total harmonic distortion(THD)at the joint connection point.
文摘Nowadays, renewable energy resources play an important role in replacing conventional energy resources such as fossil fuel by integrating solar, wind and geothermal energy. Photovoltaic energy is one?of?the very promising renewable energy resources which grew rapidly in the past few years, it can be used to produce electric energy through photovoltaic process. The primary objective of the research proposed in this paper is to facilitate the increasing penetration levels of PV systems in the electric distribution networks. In this work, the PV module electrical model is presented based on the mathematical equations and was implemented on MATLAB to simulate the non-linear characteristics I-V and P-V curves with variable input parameters which are irradiance and temperature based on Riyadh region. In addition, the reliability evaluation of distribution networks, including distributed generators of solar photovoltaic (PV) with varying output power capacity is presented also. The Monte Carlo simulation algorithm is applied to test the distribution network which is RBTS Bus 2 and the same has been conducted on the original case of distribution network substation 7029 which is located at KSA Riyadh. The two distribution networks have been modified to include the PV’s distributed generators. The distributed generators contribute to supply a part of the load during normal mode and supply the entire load during component failure or failure of grid operation supply. The PV stochastic models have been used to simulate the randomness of these resources. Moreover, the study shows that the implementation and integration of renewable resources as distributed generations have improved the reliability of the distribution networks.
文摘A microgrid is associated with a low voltage distribution power network and inherits small modular generation systems and loads that have certain coordinated functions to provide the solution to supply premium power to remote or specific areas. Similar to conventional power systems, the energy management of distributed generation resources (DERs) is carried out to minimize the operation cost and maximize benefit of installation of DERS in a microgrid. This paper presents the process of implementing the short-term DER scheduling function for a dc microgrid. The optimal scheduling results for two operation modes are then reported.
文摘Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.
基金the U.S.Department of Energy under Contract No.DE-AC36-08GO28308.
文摘With the rapid integration of distributed energy resources(DERs),distribution utilities are faced with new and unprecedented issues.New challenges introduced by high penetra-tion of DERs range from poor observability to overload and reverse power flow problems,under-/over-voltages,maloperation of legacy protection systems,and requirements for new planning procedures.Distribution utility personnel are not adequately trained,and legacy control centers are not properly equipped to cope with these issues.Fortunately,distribution energy resource management systems(DERMSs)are emerging software technologies aimed to provide distribution system operators(DSOs)with a specialized set of tools to enable them to overcome the issues caused by DERs and to maximize the benefits of the presence of high penetration of these novel resources.However,as DERMS technology is still emerging,its definition is vague and can refer to very different levels of software hierarchies,spanning from decentralized virtual power plants to DER aggregators and fully centralized enterprise systems(called utility DERMS).Although they are all frequently simply called DERIMS,these software technologies have different sets of tools and aim to provide different services to different stakeholders.This paper explores how these different software technologies can complement each other,and how they can provide significant benefits to DSOs in enabling them to successfully manage evolving distribution networks with high penetration of DERs when they are integrated together into the control centers of distribution utilities.
基金supported by National High Technology Research and Development Program of China(863Program)(No.2015AA050403)National Natural Science Foundation of China(No.51677124,No.51607033,No.51607034)Research and Demonstration on Combined Optimal Operation and Testing Technology for New Distributed Energy,Energy Storage and Active Load of State Grid Corporation of China
文摘Renewable energy based distributed generation(DG) has the potential to reach high penetration levels in the residential region. However, its integration at the demand side will cause rapid power fluctuations of the tieline in the residential region. The traditional generators are generally difficult to manage rapid power fluctuations due to their insufficient efficiency requirements and low responding speed. With an effective control strategy, the demand side resources(DSRs) including DGs, electric vehicles and thermostatically-controlled loads at thedemand side, are able to serve as the energy storage system to smooth the load fluctuations. However, it is a challenge to properly model different types of DSRs. To solve this problem, a unified state model is first developed to describe the characteristics of different DSRs. Then a load curve smoothing strategy is proposed to offset the load fluctuations of the tie-line of the residential region, where a control matrix deduced from the unified state model is introduced to manage the power outputs of different DSRs,considering the response order and the comfort levels.Finally, a residential region with households is used to validate the load curve smoothing strategy based on the unified state model, and the results show that the power fluctuation rate of the tie-line is significantly decreased.Meanwhile, comparative study results are shown to demonstrate the advantages of the unified state model based load curve smoothing strategy.
文摘Micro-grid plays a vital role in fulfilling the increasing demand by using distributed renewable energy resources. Demand and response technique can be broadly classified under the setup DR deployed (e.g. ISO’s/RTO’s). Demand response program can be implemented to improve power system quality, reliability and increasing demand. In modern power industry, strategic player can take more benefit from more emphasized DR study in terms of social benefit (uninterrupted power supply to consumers) and economy. This paper proposes the distributed micro-grid control and implemented control setup implemented demand response algorithm, which provides better power system reliability. This paper presents contingencies control demand and response for micro-grid. The main advantage of implementation of demand and response algorithms in Micro-grids provides reliable power supplies to consumers. The proposed micro-grid TCP/IP setup provides a chance to respond the contingencies to recover the shed to active condition. Micro-grid controller implements demand and response algorithm reasonable for managing the demand of the load and intelligent load scheme in case of blackout.
文摘Customer satisfaction and participation in utility supply packages is the first and foremost factor in the success of any supplying agency whether wholesale or retail dealer. The paper presents the concept of major prospects of non- autonomous micro-grids installed in a certain locality. The article shows the basic background that is required for the installment of micro grid in a particular area and discusses the primary factors or pre-requisites that are required for the existence and operation of micro-grids. It elaborate the major profitable applications and benefits that developing and developed states get by using micro-grids in an area where utility grid is already functioning .It also explains the basic improvement in the quality of supply from micro grid after its installment. It also throws light on afterwards impact on society with this system, such impacts include reliability, tariff rates, economics etc. The article discusses micro-grids as the future of modern power systems. This paper shows significance of modernization by latest topologies in power systems and its effect that will come afterwards.
基金This work was supported by National High Technology Research and Development Program of China under Grant 2014AA051901(Key Technology Research and Demonstration for Active Distribution Grid).
文摘The approach to planning,design and operation of distribution networks have significantly changed due to the proliferation of distributed energy resources(DERs)together with load growth,energy storage technology advancements and increased consumer expectations.Planning of active distribution systems(ADS)has been a very hot topic in the 21st Century.A large number of studies have been done on ADS planning.This paper reviews the state of the art of current ADS planning.Firstly,the influences of DERs on the ADS planning are addressed.Secondly,the characteristics and objectives of ADS planning are summarized.Then,up to date planning model and some related research are highlighted in different areas such as forecasting load and distributed generation,mathematical model of ADS planning and solution algorithms.Finally,the paper explores some directions of future research on ADS planning including planning collaboratively with all elements combined in ADS,taking into account of joint planning in secondary system,coordinating goals among different layers,integrating detailed operation simulations and regular performance based reviews into planning,and developing advanced planning tools.
文摘The foremost issues of 21st century are challenging demand of electrical energy and to control the emission of Green House Gases(GHG)emissions.Renewable energy resources based sustainable microgrid emerges as one of the best feasible solution for future energy demand while considering zero carbon emission,fossil fuel independency,and enhanced reliability.In this paper,optimization and implementation of institutional based sustainable microgrid are discussed based on cost analysis,carbon emission,and availability of energy resources.Various microgrid topologies are considered for addressing the most ideal solution.The metrological data such as irradiance is acquired from solar satellite data of NASA(National Aero Space Agency)while the data for wind speed is taken from synergy enviro engineer’s site.HOMER®simulation tool is used for modelling and optimization purpose.