期刊文献+
共找到549篇文章
< 1 2 28 >
每页显示 20 50 100
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
1
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
2
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
3
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Optimal Placement and Sizing of Distributed Generations for Power Losses Minimization Using PSO-Based Deep Learning Techniques
4
作者 Bello-Pierre Ngoussandou Nicodem Nisso +1 位作者 Dieudonné Kaoga Kidmo   Kitmo 《Smart Grid and Renewable Energy》 2023年第9期169-181,共13页
The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations ar... The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method. 展开更多
关键词 distributed generations Deep Learning Techniques Improved particle swarm optimization Power Losses Power Losses Minimization optimal Placement
下载PDF
Bacterial graphical user interface oriented by particle swarm optimization strategy for optimization of multiple type DFACTS for power quality enhancement in distribution system 被引量:3
5
作者 M.Mohammadi M.Montazeri S.Abasi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期569-588,共20页
This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste... This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss. 展开更多
关键词 distribution system power quality single type and multiple type DFACTS BFO algorithm particle swarm optimization(PSO)
下载PDF
Optimal Intelligent Reconfiguration of Distribution Network in the Presence of Distributed Generation and Storage System
6
作者 Gang Lei Chunxiang Xu 《Energy Engineering》 EI 2022年第5期2005-2029,共25页
In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration pr... In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared. 展开更多
关键词 RECONFIGURATION distributed generation resources(DGRs) fuzzy modeling developed particle swarm optimization(PSO)algorithm
下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm
7
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm 被引量:7
8
作者 Shan CHENG Min-you CHEN +1 位作者 Rong-jong WAI Fang-zong WANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第4期300-311,共12页
This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of t... This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units. 展开更多
关键词 distributed generation Multi-objective particle swarm optimization optimal placement Voltage stability index Power loss
原文传递
Analytical Hybrid Particle Swarm Optimization Algorithm for Optimal Siting and Sizing of Distributed Generation in Smart Grid 被引量:3
9
作者 Syed Muhammad Arif Akhtar Hussain +2 位作者 Tek Tjing Lie Syed Muhammad Ahsan Hassan Abbas Khan 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1221-1230,共10页
In this paper,the hybridization of standard particle swarm optimisation(PSO)with the analytical method(2/3 rd rule)is proposed,which is called as analytical hybrid PSO(AHPSO)algorithm used for the optimal siting and s... In this paper,the hybridization of standard particle swarm optimisation(PSO)with the analytical method(2/3 rd rule)is proposed,which is called as analytical hybrid PSO(AHPSO)algorithm used for the optimal siting and sizing of distribution generation.The proposed AHPSO algorithm is implemented to cater for uniformly distributed,increasingly distributed,centrally distributed,and randomly distributed loads in conventional power systems.To demonstrate the effectiveness of the proposed algorithm,the convergence speed and optimization performances of standard PSO and the proposed AHPSO algorithms are compared for two cases.In the first case,the performances of both the algorithms are compared for four different load distributions via an IEEE 10-bus system.In the second case,the performances of both the algorithms are compared for IEEE 10-bus,IEEE 33-bus,IEEE 69-bus systems,and a real distribution system of Korea.Simulation results show that the proposed AHPSO algorithm converges significantly faster than the standard PSO.The results of the proposed algorithm are compared with those of an analytical algorithm,and the results of them are similar. 展开更多
关键词 Siting and sizing of distributed generation distribution system hybrid algorithm loss minimization particle swarm optimization(PSO)
原文传递
The Phenomenal Alleviation of Transmission Congestion by Optimally Placed Multiple Distributed Generators Using PSO
10
作者 Karuppasamy Muthulakshmi Rajamanickam Manickaraj Sasiraja Velu Suresh Kumar 《Circuits and Systems》 2016年第8期1677-1688,共13页
In the current electricity paradigm, the rapid elevation of demands in industrial sector and the process of restructuring are the main causes for the overuse of transmission systems. Hence, the evolution of novel tech... In the current electricity paradigm, the rapid elevation of demands in industrial sector and the process of restructuring are the main causes for the overuse of transmission systems. Hence, the evolution of novel technology is the ultimate need to avoid the damages in the available transmission systems. An appreciable volume of renewable energy sources is used to produce electric power, after the implementation of deregulation in power system. Even though, they are intended to improve the reliability of power system, the unpredictable outages of generators or transmission lines, an impulsive increase in demand and the sudden failures of vital equipment cause transmission congestion in one or some transmission lines. Generation rescheduling and load shedding can be used to alleviate congestion, but some cases require quite few improved methods. With the extensive application of Distributed Generation (DG), congestion management is also performed by the optimal placement of DGs. Therefore, this research employs a Line Flow Sensitivity Factor (LFSF) and Particle Swarm Optimization (PSO) for the determination of optimal location and size of multiple DG units, respectively. This proposed problem is formulated to minimize the total system losses and real power flow performance index. This approach is experimented in modified IEEE-30 bus test system. The results of N-1 contingency analysis with DG units prove the competence of this proposed approach, since the total numbers of congested lines get reduced from 15 to 2. Hence, the results show that the proposed approach is robust and simple in alleviating transmission congestion by the optimal placement and sizing of multiple DG units. 展开更多
关键词 Congestion Management Line Flow Sensitivity Factor distributed generation particle swarm optimization
下载PDF
Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm 被引量:5
11
作者 K.Jagatheesan B.Anand +3 位作者 Sourav Samanta Nilanjan Dey Amira S.Ashour Valentina E.Balas 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期503-515,共13页
Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system ... Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller. 展开更多
关键词 Automatic generation control(AGC) FIREFLY algorithm GENETIC algorithm(GA) particle swarm optimization(PSO) proportional-integral-derivative(PID) controller
下载PDF
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
12
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems
13
作者 N. A. Khan S. Ghosh S. P. Ghoshal 《Energy and Power Engineering》 2013年第4期1005-1010,共6页
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no... This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization. 展开更多
关键词 Normal Load Flow Radial distribution System distributed generation SHUNT Capacitors BINARY particle swarm optimization BINARY GRAVITATIONAL SEARCH algorithm TOTAL line Loss TOTAL Voltage Deviation
下载PDF
Estimation of distribution algorithm enhanced particle swarm optimization for water distribution network optimization 被引量:1
14
作者 Xuewei QI Ke LI Walter D. POTTER 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第2期341-351,共11页
The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorith... The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm opti- mization (PSO) has been shown to be a fast converging algorithm for WDN optimization. An improved estimation of distribution algorithm (EDA) using historic best positions to construct a sample space is hybridized with PSO both in sequential and in parallel to improve population diversity control and avoid premature conver- gence. Two water distribution network benchmark exam- ples from the literature are adopted to evaluate the performance of the proposed hybrid algorithms. The experimental results indicate that the proposed algorithms achieved the literature record minimum (6.081 MS) for the small size Hanoi network. For the large size Balerma network, the parallel hybrid achieved a slightly lower minimum (1.921M) than the current literature reported best minimum (1.923MC). The average number of evaluations needed to achieve the minimum is one order smaller than most existing algorithms. With a fixed, small number of evaluations, the sequential hybrid outperforms the parallel hybrid showing its capability for fast convergence. The fitness and diversity of the populations were tracked for the proposed algorithms. The track record suggests that constructing an EDA sample space with historic best positions can improve diversity control significantly. Parallel hybridization also helps to improve diversity control yet its effect is relatively less significant. 展开更多
关键词 particle swarm optimization (PSO) diversitycontrol estimation of distribution algorithm (EDA) waterdistribution network (WDN) premature convergence hybrid strategy
原文传递
Optimal allocation of plug-in electric vehicle charging stations in the distribution network with distributed generation
15
作者 Ebunle Akupan Rene Willy Stephen Tounsi Fokui Paule Kevin Nembou Kouonchie 《Green Energy and Intelligent Transportation》 2023年第3期53-64,共12页
The transportation sector is characterized by high emissions of greenhouse gases(GHG)into the atmosphere.Consequently,electric vehicles(EVs)have been proposed as a revolutionary solution to mitigate GHG emissions and ... The transportation sector is characterized by high emissions of greenhouse gases(GHG)into the atmosphere.Consequently,electric vehicles(EVs)have been proposed as a revolutionary solution to mitigate GHG emissions and the dependence on petroleum products,which are fast depleting.EVs are proliferating in many countries worldwide and the fast adoption of this technology is significantly dependent on the expansion of charging stations.This study proposes the use of the hybrid genetic algorithm and particle swarm optimization(GA-PSO)for the optimal allocation of plug-in EV charging stations(PEVCS)into the distribution network with distributed generation(DG)in high volumes and at selected buses.Photovoltaic(PV)systems with a power factor of 0.95 are used as DGs.The PVs are penetrated into the distribution network at 60%and six penetration cases are considered for the optimal placement of the PEVCSs.The optimization problem is formulated as a multi-objective problem minimizing the active and reactive power losses as well as the voltage deviation index.The IEEE 33 and 69 bus distribution networks are used as test networks.The simulation was performed using MATLAB and the results obtained validate the effectiveness of the hybrid GA-PSO.For example,the integration of PEVCSs results in the minimum bus voltage still within accepted margins.For the IEEE 69 bus network,the resulting minimum voltage is 0.973 p.u in case 1,0.982 p.u in case 2,0.96 p.u in case 3,0.961 p.u in case 4,0.954 p.u in case 5,and 0.965 p.u in case 6.EVs are a sustainable means of significantly mitigating emissions from the transportation sector and their utilization is essential as the worldwide concern of climate change and a carbon-free society intensifies. 展开更多
关键词 Electric vehicles Charging stations distributed generation PHOTOVOLTAIC Genetic algorithm particle swarm optimization
原文传递
An Effective Non-Commutative Encryption Approach with Optimized Genetic Algorithm for Ensuring Data Protection in Cloud Computing 被引量:2
16
作者 S.Jerald Nirmal Kumar S.Ravimaran M.M.Gowthul Alam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期671-697,共27页
Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag... Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works. 展开更多
关键词 Cloud computing quantum key distribution Diffie Hellman non-commutative approach genetic algorithm particle swarm optimization
下载PDF
Structural Parameter Optimization of Multilayer Conductors in HTS Cable 被引量:1
17
作者 Yan Mao Jie Qiu +6 位作者 Xin-Ying Liu Zhi-Xuan Wang Shu-Hong Wang Jian-Guo Zhu You-Guang Guo Zhi-Wei Lin Jian-Xun Jin 《Journal of Electronic Science and Technology of China》 2008年第2期112-118,共7页
In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm opti... In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality. 展开更多
关键词 Current distribution design for sixsigma (DFSS) genetic algorithm (GA) high temperature superconducting (HTS) cable particle swarm optimization (PSO) structural parameter optimization.
下载PDF
Application of Metaheuristic Algorithms for Optimizing Longitudinal Square Porous Fins
18
作者 Samer H.Atawneh Waqar A.Khan +1 位作者 Nawaf N.Hamadneh Adeeb M.Alhomoud 《Computers, Materials & Continua》 SCIE EI 2021年第4期73-87,共15页
The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms.A generalized nonlinear ordinary differential equation is derived using Darcy an... The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms.A generalized nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws in the energy balance around a control volume and is solved numerically using RFK 45 method.The temperature of the base surface is higher than the fin surface,and the fin tip is kept adiabatic or cooled by convection heat transfer.The other pertinent parameters include Rayleigh number(100≤Ra≤10^(4)),Darcy number,(10^(−4)≤Da≤10^(−2)),relative thermal conductivity ratio of solid phase to fluid(1000≤kr≤8000),Nusselt number(10≤Nu≤100),porosity(0.1≤φ≤0.9).The impacts of these parameters on the entropy generation rate are investigated and optimized using metaheuristic algorithms.In computer science,metaheuristic algorithms are one of the most widely used techniques for optimization problems.In this research,three metaheuristic algorithms,including the firefly algorithm(FFA),particle swarm algorithm(PSO),and hybrid algorithm(FFAPSO)are employed to examine the performance of square fins.It is demonstrated that FFA-PSO takes fewer iterations and less computational time to converge compared to other algorithms. 展开更多
关键词 optimization firefly algorithm particle swarm algorithm hybrid algorithms porous media entropy generation rate
下载PDF
Research on Collaboration Theory of Distributed Measurement System and Real-Time of Communication Platform
19
作者 SHENYan 《Journal of Electronic Science and Technology of China》 2005年第1期95-95,共1页
关键词 distributed measurement system agent technology swarm intellgence particle swarm optimization algorithm Collaboration model Switched Ethernet Real-time Scheduling AEROENGINE
下载PDF
Blockchain-Based Power Transaction Method for Active Distribution Network
20
作者 Fei Zeng Zhinong Wei +1 位作者 Haiteng Han Yang Chen 《Energy Engineering》 EI 2023年第5期1067-1080,共14页
A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain struc... A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods. 展开更多
关键词 Blockchain active distribution network power transaction energy request mechanism particle swarm optimization algorithm
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部