期刊文献+
共找到775篇文章
< 1 2 39 >
每页显示 20 50 100
Application of a Coupled Land Surface-Hydrological Model to Flood Simulation in the Huaihe River Basin of China 被引量:2
1
作者 LI Min LIN Zhao-Hui +1 位作者 YANG Chuan-Guo SHAO Quan-Xi 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期493-498,共6页
A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR rean... A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting. 展开更多
关键词 coupled land surface-hydrological model flood simulation huaihe river basin flood detention and storage
下载PDF
The Analysis on the Temporal and Spatial Variation of Strong Precipitation Caused Flood and Agricultural Disaster Loss in Huaihe River Basin of Anhui Province during Meiyu Period of 2007 被引量:1
2
作者 YU Jia-cheng1,WU Chang-chun1,HUANG Xiao-yan1,HE Yong-qing1,YU Yang2,WANG Sheng2,GUO Xiu-yun2,WANG Hua3 1.Anhui Agricultural University,Hefei 230036,China 2.Anhui Meteorological Bureau,Hefei 230061,China 3.Anhui Civil Affairs Bureau,Hefei 230061,China 《Meteorological and Environmental Research》 CAS 2011年第7期87-90,共4页
[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]... [Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin. 展开更多
关键词 huaihe river basin of Anhui Province Meiyu period of 2007 Strong precipitation caused flood Temporal and spatial distribution Agricultural disaster loss Characteristic analysis China
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
3
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy river basin
下载PDF
A distributed hydrological model with its application to the Jinghe watershed in the Yellow River Basin 被引量:4
4
作者 WANG Zhonggen1, ZHENG Hongxing1, LIU Changming1, , WU Xianfeng2 2 & ZHAO Weimin3 1. Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 2. Institute of Environmental Science, Beijing Normal University, Beijing 100875, China 3. Water Resources Conservation Committee of Yellow River, Zhengzhou 450003, China 《Science China(Technological Sciences)》 SCIE EI CAS 2004年第z1期60-71,共12页
For the purpose of water resources management in the Yellow River Basin with highly spatial difference, a daily distributed hydrological model was proposed, of which the determination of spatially-distributed paramete... For the purpose of water resources management in the Yellow River Basin with highly spatial difference, a daily distributed hydrological model was proposed, of which the determination of spatially-distributed parameters and model inputs processing were performed by means of GIS/RS. In the model, the computation of runoff yield was based on the topography index method and flow routing was modeled by Maskingum method. The operation of the model is followed by means of “command structure” technique based upon the topography of river network. A case study using the model was conducted for the Jinghe watershed, which locates at the middle Yellow River Basin. The simulation of the hydrological processes in 1996 has shown that water quantity balance errors were less than 5% and the Nash-Sutcliffe coefficient arrived at 0.7, indicating that the model structure is justifiable, and the precision of the model can satisfy the purpose of water resources management. 展开更多
关键词 distributed hydrological model structure and equation GIS and RS Jinghe basin YELLOW river basin.
原文传递
MACROSCALE HYDROLOGICAL MODELING OVER THE HUAIHE RIVER BASIN 被引量:3
5
作者 郝振纯 苏凤阁 谢正辉 《Acta meteorologica Sinica》 SCIE 2002年第3期363-373,共11页
The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscale hydrological model for the assessment of the effects of climate change on water resources.The monthly discharge from 1953... The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscale hydrological model for the assessment of the effects of climate change on water resources.The monthly discharge from 1953 through 1985 in the Huaihe River Basin is simulated.The sensitivity analysis on runoff is made under assumed climatic scenarios.There is a good agreement between the observed and simulated runoff.Due to the increase of time interval and decrease of precipitation intensity on monthly time scale,there is no monthly runoff in some model girds as the momhly hydrological model is applied to the Huaihe River Basin.Two methods of downscaling monthly precipitation to daily resolution are validated by running the Xin'anjiang model with monthly data at a daily time step.and the model outputs are more realistic than the monthly hydrological model.The metbods of downscaling of monthly precipitation to daily resolution may provide an idea in solving the problem of the shortage of daily data.In the research of the climate change on water resources,the daily hydrological model can be used instead of the monthly one. 展开更多
关键词 macroscale hydrological model Xin'anjiang model huaihe river basin downscale
原文传递
Development and Application of a Distributed Conceptual Hydrological Model to Simulate Runoff in the Be River Basin and the Water Transfer Capacity to the Saigon River Basin,Vietnam
6
作者 Vu Van Nghi Ha Bui Nguyen Lam +1 位作者 Tai Pham Anh Can Thu Van 《Journal of Environmental Science and Engineering(A)》 2020年第1期1-12,共12页
A distributed conceptual model(FRASC(Flow Routed Accumulation Simulation in a Catchment))has been developed,in which a rainfall-runoff module is modified from an original lumped conceptual model(Xinanjiang)via a GIS(G... A distributed conceptual model(FRASC(Flow Routed Accumulation Simulation in a Catchment))has been developed,in which a rainfall-runoff module is modified from an original lumped conceptual model(Xinanjiang)via a GIS(Geographic Information System)-aided approach and a water allocation module contains reservoirs,water users and hydropower plants.The model is relatively easy to use and can easily obtain input data,but still has the ability to generate hydrological information at many points within a catchment.The model application to the Be River basin is evaluated and shows to be reliable in terms of close agreements between simulated and observed series.Daily natural flow rates for 36 years are simulated at 7,981 grid cells within a studied area of 7,650 km^2.Based on this simulated database,design discharges are predicted in various probabilities.Finally,the research determines that the water transfer capacity from the Be River basin to the Saigon River basin reaches 14%,18% and 23% of a planned value of 75 m^3/s during the dry period in a wet year(P10%),average year(P50%)and dry year(P90%),respectively. 展开更多
关键词 BE river basin distributed CONCEPTUAL hydrological model FRASC
下载PDF
Application of Spatially Distributed Calibrated Hydrological Model in Evapotranspiration Simulation of Three Gorges Reservoir Area of China:A Case Study in the Madu River Basin
7
作者 CHEN Junhong ZHANG Lihua +1 位作者 CHEN Peipei MA Yongming 《Chinese Geographical Science》 SCIE CSCD 2022年第6期1083-1098,共16页
Evapotranspiration(ET)is the key to the water cycle process and an important factor for studying near-surface water and heat balance.Accurately estimating ET is significant for hydrology,meteorology,ecology,agricultur... Evapotranspiration(ET)is the key to the water cycle process and an important factor for studying near-surface water and heat balance.Accurately estimating ET is significant for hydrology,meteorology,ecology,agriculture,etc..This paper simulates ET in the Madu River Basin of Three Gorges Reservoir Area of China during 2009-2018 based on the Soil and Water Assessment Tool(SWAT)model,which was calibrated and validated using the MODIS(Moderate-resolution Imaging Spectroradiometer)/Terra Net ET 8-Day L4 Global 500 m SIN Grid(MOD16A2)dataset and measured ET.Two calibration strategies(lumped calibration(LC)and spatially distributed calibration(SDC))were used.The basin was divided into 34 sub-basins,and the coefficient of determination(R^(2))and NashSutcliffe efficiency coefficient(NSE)of each sub-basin were greater than 0.6 in both the calibration and validation periods.The R2 and NSE were higher in the validation period than those in the calibration period.Compared with the measured ET,the accuracy of the model on the daily scale is:R^(2)=0.704 and NSE=0.759(SDC results).The model simulation accuracy of LC and SDC for the sub-basin scale was R^(2)=0.857,R^(2)=0.862(monthly)and R^(2)=0.227,R^(2)=0.404(annually),respectively;for the whole basin scale was R^(2)=0.902,R^(2)=0.900(monthly)and R^(2)=0.507 and R^(2)=0.519(annually),respectively.The model performed acceptably,and SDC performed the best,indicating that remote sensing data can be used for SWAT model calibration.During 2009-2018,ET generally increased in the Madu River Basin(SDC results,7.21 mm/yr),with a multiyear average value of 734.37 mm/yr.The annual ET change rate for the sub-basin was relatively low upstream and downstream.The linear correlation analysis between ET and meteorological factors shows that on the monthly scale,precipitation,solar radiation and daily maximum and minimum temperature were significantly correlated with ET;annually,solar radiation and wind speed had a moderate correlation with ET.The correlation between maximum temperature and ET is best on the monthly scale(Pearson correlation coefficient R=0.945),which may means that the increasing ET originating from increasing temperature(global warming).However,the sub-basins near Shennongjia Nature Reserve that are in upstream have a negative ET change rate,which means that ET decreases in these sub-basins,indicating that the’Evaporation Paradox’exists in these sub-basins.This study explored the potential of remote-sensing-based ET data for hydrological model calibration and provides a decision-making reference for water resource management in the Madu River Basin. 展开更多
关键词 soil and water assessment tool distributed simulation for evapotranspiration model calibration remote sensing evapotranspiration products Madu river basin
下载PDF
Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China 被引量:12
8
作者 ZHAO Haigen 《Journal of Geographical Sciences》 SCIE CSCD 2015年第2期177-195,共19页
The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DT... The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins. 展开更多
关键词 RAINFALL TRMM distributed hydrological model DTVGM hydrological simulation Weihe river catchment
原文传递
Glacier area change and its impact on runoff in the Manas River Basin,Northwest China from 2000 to 2020
9
作者 WANG Tongxia CHEN Fulong +5 位作者 LONG Aihua ZHANG Zhengyong HE Chaofei LYU Tingbo LIU Bo HUANG Yanhao 《Journal of Arid Land》 SCIE CSCD 2024年第7期877-894,共18页
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s... Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins. 展开更多
关键词 glacier area glacial runoff climate change glacier boundary extraction distributed degree-day model Manas river basin
下载PDF
Influence of varied drought types on soil conservation service within the framework of climate change:insights from the Jinghe River Basin,China
10
作者 BAI Jizhou LI Jing +4 位作者 RAN Hui ZHOU Zixiang DANG Hui ZHANG Cheng YU Yuyang 《Journal of Arid Land》 SCIE CSCD 2024年第2期220-245,共26页
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio... Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin. 展开更多
关键词 meteorological drought hydrological drought agricultural drought soil conservation service Variable Infiltration Capacity(VIC)model Revised Universal Soil Loss Equation(RUSLE) Jinghe river basin
下载PDF
A distributed runoff model for inland mountainous river basin of Northwest China 被引量:5
11
作者 CHENRensheng KANGErsi +1 位作者 YANGJianping ZHANGJishi 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期363-372,共10页
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort... In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content. 展开更多
关键词 inland river mountainous basin distributed runoff model VEGETATION Heihe river
下载PDF
Distributed modeling of direct solar radiation on rugged terrain of the Yellow River Basin 被引量:4
12
作者 ZENG Yan QIU Xinfa +1 位作者 LIU Changming JIANG Aijun 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期439-447,共9页
Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data... Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well. 展开更多
关键词 direct solar radiation (DSR) rugged terrain digital elevation model (DEM) distributed model Yellow river basin
下载PDF
Hydrological characteristics and changes in the Nu-Salween River basin revealed with model-based reconstructed data 被引量:3
13
作者 YANG Fan LU Hui +6 位作者 YANG Kun HUANG Guang-wei LI Yi-shan WANG Wei LU Ping TIAN Fu-qiang HUANG Yu-gang 《Journal of Mountain Science》 SCIE CSCD 2021年第11期2982-3002,共21页
The Nu-Salween River(NSR),the longest free-flow river in Southeast Asia,plays an irreplaceable role in social development and ecological protection.The lower NSR region is particularly valuable as it is inhabited by a... The Nu-Salween River(NSR),the longest free-flow river in Southeast Asia,plays an irreplaceable role in social development and ecological protection.The lower NSR region is particularly valuable as it is inhabited by approximately 6.7 million people.The basin has limited hydraulic conservancy infrastructure and insufficient ability to cope with climate change risks.Studying the hydrological characteristics and changes in the basin provides the scientific basis for rational protection and development of the basin.However,owing to the limitation of observation data,previous studies have focused on the local area and neglected the study of the lower reaches,which is not enough to reflect the spatial characteristics of the entire basin.In this study,the ECMWF 5th generation reanalysis data(ERA5)and Multi-Source Weighted-Ensemble Precipitation(MSWEP)were applied to develop a geomorphology-based hydrological model(GBHM)for reconstructing hydrological datasets(i.e.GBHM-ERA5 and GBHM-MSWEP).The reconstructed datasets covering the complete basin were verified against the gauge observation and compared with other commonly used streamflow products,including Global Flood Awareness System v2.1,GloFAS-Reanalysis dataset v3.0,and linear optimal runoff aggregate(LORA).The comparison results revealed that GBHM-ERA5 is significantly better than the other four datasets and provides a good reproduction of the hydrological characteristics and trends of the NSR.Detailed analysis of GBHM-ERA5 revealed that:(1)A multi-year mean surface runoff represented 39%of precipitation over the basin during 1980–2018,which had low surface runoff in the upstream,while areas around the Three Parallel Rivers Area and the estuary had abundant surface runoff.(2)The surface runoff and discharge coefficient of variations in spring were larger than those in other seasons,and the inter-annual variation in the downstream was smaller than that in the upstream and midstream regions.(3)More than 70%of the basin areas showed a decreasing trend in the surface runoff,except for parts of Nagqu,south of Shan State in Myanmar,and Thailand,where surface runoff has an increasing trend.(4)The downstream discharge has dropped significantly at a rate of approximately 680 million cubic metresper year,and the decline rate is greater than that of upstream and midstream,especially in summer.This study provides a data basis for subsequent studies in the NSR basin and further elucidates the impact of climate change on the basin,which is beneficial to river planning and promotes international cooperation on the water-and eco-security of the basin. 展开更多
关键词 Nu-Salween river distributed hydrologic model ERA5 Surface runoff DISCHARGE Climate Change
下载PDF
Application of hydrological models in a snowmelt region of Aksu River Basin 被引量:1
14
作者 Ouyang Rulin Ren Liliang +1 位作者 Cheng Weiming Yu Zhongbo 《Water Science and Engineering》 EI CAS 2008年第4期1-13,共13页
This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. T... This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. Two hydrological models, the snowmelt-runoff model (SRM) and the Danish NedbФr-AfstrФmnings rainfall-runoff model (NAM), were used to simulate daily discharge processes in the Aksu River Basin. This study used the snow-covered area from MODIS remote sensing data as the SRM input. With the help of ArcGIS software, this study successfully derived the digital drainage network and elevation zones of the basin from digital elevation data. The simulation results showed that the SRM based on MODIS data was more accurate than NAM. This demonstrates that the application of remote sensing data to hydrological snowmelt models is a feasible and effective approach to runoff simulation and prediction in arid unguaged basins where snowmelt is a major runoff factor. 展开更多
关键词 hydrological model snowmelt-runoff model (SRM) Danish NedbФr-AfstrФmnings model (NAM) remote sensing runoff simulation and prediction snowmelt region unguaged basin Aksu river basin
下载PDF
Projection of future streamflow of the Hunza River Basin,Karakoram Range(Pakistan)using HBV hydrological model 被引量:1
15
作者 Ayaz Fateh ALI XIAO Cun-de +3 位作者 ZHANG Xiao-peng Muhammad ADNAN Mudassar IQBAL Garee KHAN 《Journal of Mountain Science》 SCIE CSCD 2018年第10期2218-2235,共18页
Hydrologiska Byrans Vattenbalansavdeling(HBV) Light model was used to evaluate the performance of the model in response to climate change in the snowy and glaciated catchment area of Hunza River Basin. The study aimed... Hydrologiska Byrans Vattenbalansavdeling(HBV) Light model was used to evaluate the performance of the model in response to climate change in the snowy and glaciated catchment area of Hunza River Basin. The study aimed to understand the temporal variation of streamflow of Hunza River and its contribution to Indus River System(IRS). HBV model performed fairly well both during calibration(R2=0.87, Reff=0.85, PBIAS=-0.36) and validation(R2=0.86, Reff=0.83, PBIAS=-13.58) periods on daily time scale in the Hunza River Basin. Model performed better on monthly time scale with slightly underestimated low flows period during bothcalibration(R2=0.94, Reff=0.88, PBIAS=0.47) and validation(R2=0.92, Reff=0.85, PBIAS=15.83) periods. Simulated streamflow analysis from 1995-2010 unveiled that the average percentage contribution of snow, rain and glacier melt to the streamflow of Hunza River is about 16.5%, 19.4% and 64% respectively. In addition, the HBV-Light model performance was also evaluated for prediction of future streamflow in the Hunza River using future projected data of three General Circulation Model(GCMs) i.e. BCC-CSM1.1, CanESM2, and MIROCESM under RCP2.6, 4.5 and 8.5 and predictions were made over three time periods, 2010-2039, 2040-2069 and 2070-2099, using 1980-2010 as the control period. Overall projected climate results reveal that temperature and precipitation are the most sensitiveparameters to the streamflow of Hunza River. MIROC-ESM predicted the highest increase in the future streamflow of the Hunza River due to increase in temperature and precipitation under RCP4.5 and 8.5 scenarios from 2010-2099 while predicted slight increase in the streamflow under RCP2.6 during the start and end of the 21 th century. However, BCCCSM1.1 predicted decrease in the streamflow under RCP8.5 due to decrease in temperature and precipitation from 2010-2099. However, Can ESM2 predicted 22%-88% increase in the streamflow under RCP4.5 from 2010-2099. The results of this study could be useful for decision making and effective future strategic plans for water management and their sustainability in the region. 展开更多
关键词 HBV Light model hydrological modeling Hunza river Upper Indus basin Snow and glacier-melt
下载PDF
Evaluation and Analysis of RegCM3 Simulated Summer Rainfall over the Huaihe River Basin of China 被引量:1
16
作者 宗培书 王会军 《Acta meteorologica Sinica》 SCIE 2011年第3期386-394,共9页
This study evaluates the ability of the Abdus Salam International Center for Theoretical Physics (ICTP) version 3 Regional Climate Model (RegCM3) in simulating the summer rainfall amount and distribution and large... This study evaluates the ability of the Abdus Salam International Center for Theoretical Physics (ICTP) version 3 Regional Climate Model (RegCM3) in simulating the summer rainfall amount and distribution and large-scale circulation over the Huaihe River basin of China. We conducted the simulation for the period of 1982-2001 and the wet year of 2003 to test the ensemble simulation capacity of RegCM3. First, by comparing the simulated rainfall amount and distribution against the observations, it is found that RegCM3 can reproduce the rainfall pattern and its annual variations. In addition, the simulated spatial patterns of 850-hPa wind and specific humidity fields are close to the observations, although the wind speed and humidity values are larger. Finally, the ensemble simulation of RegCM3 for summer 2003 failed to capture the spatial distribution and underestimated the magnitude of the precipitation anomalies, and the reasons are analyzed. 展开更多
关键词 regional climate model the huaihe river basin PRECIPITATION ensemble simulation
原文传递
Hydrological assessment of TRMM rainfall data over Yangtze River Basin
17
作者 Huang-he GU Zhong-bo YU +3 位作者 Chuan-guo YANG Qin JU Bao-hong LU Chuan LIANG 《Water Science and Engineering》 EI CAS 2010年第4期418-430,共13页
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale... High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models. 展开更多
关键词 Tropical Rainfall Measuring Mission (TRMM) satellite rainfall product hydrological simulation distributed hydrological model Yangtze river basin
下载PDF
Spatio-temporal trend and statistical distribution of extreme precipitation events in Huaihe River Basin during 1960-2009 被引量:24
18
作者 XIA Jun SHE Dunxian +1 位作者 ZHANG Yongyong DU Hong 《Journal of Geographical Sciences》 SCIE CSCD 2012年第2期195-208,共14页
Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are anal... Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are analyzed. Annual maximum series (AM) and peak over threshold series (POT) are selected to simulate the probability distribution of extreme pre- cipitation. The results show that positive trend of annual maximum precipitation is detected at most of used stations, only a small number of stations are found to depict a negative trend during the past five decades, and none of the positive or negative trend is significant. The maximum precipitation event almost occurred in the flooding period during the 1960s and 1970s. By the L-moments method, the parameters of three extreme distributions, i.e., Gen- eralized extreme value distribution (GEV), Generalized Pareto distribution (GP) and Gamma distribution are estimated. From the results of goodness of fit test and Kolmogorov-Smirnov (K-S) test, AM series can be better fitted by GEV model and POT series can be better fitted by GP model. By the comparison of the precipitation amounts under different return levels, it can be found that the values obtained from POT series are a little larger than the values from AM series, and they can better simulate the observed values in the Huaihe River Basin. 展开更多
关键词 huaihe river basin extreme precipitation extreme distribution L-moments method Kolmo- gorov-Smirnov test
原文传递
Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin 被引量:3
19
作者 LUO Xian WU Wenqi +2 位作者 HE Daming LI Yungang JI Xuan 《Chinese Geographical Science》 SCIE CSCD 2019年第1期13-25,共13页
Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall station... Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning. 展开更多
关键词 hydrological simulation satellite-based PRECIPITATION ESTIMATES spatial distribution of PRECIPITATION international river the LOWER Lancang-Mekong river basin
下载PDF
Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios 被引量:3
20
作者 Guo-qing Wang Jian-yun Zhang +2 位作者 Yue-ping Xu Zhen-xin Bao Xin-yue Yang 《Water Science and Engineering》 EI CAS CSCD 2017年第2期87-96,共10页
Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') pr... Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources. 展开更多
关键词 Water RESOURCES CLIMATE CHANGE VIC model Xiangjiang river basin CLIMATE scenarios hydrological modeling
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部