In order to improve the efficiency of data distributed management service in distributed interactive simulation based on high level architecture (HLA) and to reduce the network traffic and save the system resource, th...In order to improve the efficiency of data distributed management service in distributed interactive simulation based on high level architecture (HLA) and to reduce the network traffic and save the system resource, the approaches of multicast grouping in HLA-based distributed interactive simulation are discussed. Then a new dynamic multicast grouping approach is proposed. This approach is based on the current publication and subscription region in the process of simulation. The results of simulation experiment show that this approach can significantly reduce the message overhead and use fewer multicast groups.展开更多
This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analy...This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.展开更多
The development process as well as the core theory of distributed interactive simulation and high level architecture are discussed, and combined with graphics features, a system of real time distributed visual simula...The development process as well as the core theory of distributed interactive simulation and high level architecture are discussed, and combined with graphics features, a system of real time distributed visual simulation is established. Based on computer network, simulation platform is built by installing related software and modeling object, and the interactive functions are extended by programming. A set of solutions for building a distributed visual simulation system that include both hardware and software are put forward, and a practical instance is also provided. The whole building process can be summarized into two steps that are scheme consideration and system realization.展开更多
Aiming at the problems of unreliable data transmission,poor steadiness,nonsupport of complex data types,direct couple between data transmission and exchange,a high-level method based on advanced message queuing protoc...Aiming at the problems of unreliable data transmission,poor steadiness,nonsupport of complex data types,direct couple between data transmission and exchange,a high-level method based on advanced message queuing protocol( AMQP) is proposed to integrate naval distributed tactical training simulation system after serious consideration with current information exchange features of military combat system. Transferring layer in traditional user datagram protocol is implemented by publishing and subscribing scheme of message middleware. By creating message model to standardize message structure,integration architecture is formulated to resolve potential information security risks from inconsistent data type and express data transmission. Meanwhile,a communication model is put forward based on AMQP,which is in the center position of the whole transmission framework and responsible for reliably transferring battlefield data among subsystems. Experiments show that the method can accurately post amounts of data to the subscriber without error and loss,and can get excellent real-time performance of data exchange.展开更多
The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibriu...The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane.展开更多
The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity(HC), remanence(MR), and blocking temperature(TB) is simulated for an ensemble of s...The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity(HC), remanence(MR), and blocking temperature(TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are based on the two-state model for T 〈 TB and the metropolis Monte-Carlo method for T 〉 TB. It is found that the increase in the grain size significantly enhances HC and TB. The presence of interparticle exchange interaction in the system suppresses HC but causes MRto significantly increase.Our results show that the parameters associated with the particle size distribution(D(d,δ)) such as the mean particle size d and standard-deviation δ play key roles in the magnetic behavior of the system.展开更多
High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary comp...High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary computation techniques, the so-called genetic programming (GP), to model the hadron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simulate the rapidity distribution of total charged, positive and negative pions for p<sup>-</sup>-Ar and p<sup>-</sup>-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done so many runs to select the best runs of the GP program and finally obtained the rapidity distribution as a function of the lab momentum , mass number (A) and the number of particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions produced by GP technique with the corresponding experimental data and the excellent matching was so clear.展开更多
文摘In order to improve the efficiency of data distributed management service in distributed interactive simulation based on high level architecture (HLA) and to reduce the network traffic and save the system resource, the approaches of multicast grouping in HLA-based distributed interactive simulation are discussed. Then a new dynamic multicast grouping approach is proposed. This approach is based on the current publication and subscription region in the process of simulation. The results of simulation experiment show that this approach can significantly reduce the message overhead and use fewer multicast groups.
文摘This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.
文摘The development process as well as the core theory of distributed interactive simulation and high level architecture are discussed, and combined with graphics features, a system of real time distributed visual simulation is established. Based on computer network, simulation platform is built by installing related software and modeling object, and the interactive functions are extended by programming. A set of solutions for building a distributed visual simulation system that include both hardware and software are put forward, and a practical instance is also provided. The whole building process can be summarized into two steps that are scheme consideration and system realization.
基金Supported by the National Natural Science Foundation of China(No.61401496)
文摘Aiming at the problems of unreliable data transmission,poor steadiness,nonsupport of complex data types,direct couple between data transmission and exchange,a high-level method based on advanced message queuing protocol( AMQP) is proposed to integrate naval distributed tactical training simulation system after serious consideration with current information exchange features of military combat system. Transferring layer in traditional user datagram protocol is implemented by publishing and subscribing scheme of message middleware. By creating message model to standardize message structure,integration architecture is formulated to resolve potential information security risks from inconsistent data type and express data transmission. Meanwhile,a communication model is put forward based on AMQP,which is in the center position of the whole transmission framework and responsible for reliably transferring battlefield data among subsystems. Experiments show that the method can accurately post amounts of data to the subscriber without error and loss,and can get excellent real-time performance of data exchange.
基金supported by the National Science Fundation of China(No.U1937601),and the National Natural Science Foundation of China(Grant No.NSFC51905471).
文摘The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane.
文摘The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity(HC), remanence(MR), and blocking temperature(TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are based on the two-state model for T 〈 TB and the metropolis Monte-Carlo method for T 〉 TB. It is found that the increase in the grain size significantly enhances HC and TB. The presence of interparticle exchange interaction in the system suppresses HC but causes MRto significantly increase.Our results show that the parameters associated with the particle size distribution(D(d,δ)) such as the mean particle size d and standard-deviation δ play key roles in the magnetic behavior of the system.
文摘High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary computation techniques, the so-called genetic programming (GP), to model the hadron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simulate the rapidity distribution of total charged, positive and negative pions for p<sup>-</sup>-Ar and p<sup>-</sup>-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done so many runs to select the best runs of the GP program and finally obtained the rapidity distribution as a function of the lab momentum , mass number (A) and the number of particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions produced by GP technique with the corresponding experimental data and the excellent matching was so clear.