In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's...Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with...The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with nonlinear dynamics. The leader node is modeled as an autonomous nonlinear system which sends its information to one or more followers. Then, a simple and novel distributed protocol is proposed based only on the state feedback, under which the states of the followers ultimately synchronize to the leader. By using Lyapunov stability theorem and matrix theory, it is proved that the distributed leader-following consensus of nonlinear multi-agent systems with strict-feedback form is guaranteed by Lipschitz continuous control laws. Finally, some numerical simulations are provided to show the effectiveness of the developed method.展开更多
In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In orde...In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In order to improve the fault tolerance rate,a novel public blockchain consensus mechanism that applies a distributed computing architecture in a public network is proposed.Redundant calculation of blockchain ensures the credibility of the results;and the transactions with calculation results of a task are stored distributed in sequence in Directed Acyclic Graphs(DAG).The transactions issued by nodes are connected to form a net.The net can quickly provide node reputation evaluation that does not rely on third parties.Simulations show that our proposed blockchain has the following advantages:1.The task processing speed of the blockchain can be close to that of the fastest node in the entire blockchain;2.When the tasks’arrival time intervals and demanded working nodes(WNs)meet certain conditions,the network can tolerate more than 50%of malicious devices;3.No matter the number of nodes in the blockchain is increased or reduced,the network can keep robustness by adjusting the task’s arrival time interval and demanded WNs.展开更多
The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters...The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters(MRPs).Then global stable distributed cooperative attitude control laws are proposed for different cases.In the first case,the control law guarantees the state consensus during the attitude synchronization.In the second case,the control law ensures both the attitudes synchronizing to a desired constant attitude and the angular velocities converging at zero.In the third case,an attitude consensus control law with bounded control input is proposed.Finally,the effectiveness and validity of the control laws are demonstrated by simulations of six rigid bodies formation flying.展开更多
Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interac...Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.展开更多
A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency r...A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.展开更多
Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of mul...Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.展开更多
This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi...This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.展开更多
In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of...In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.展开更多
This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way ...This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.展开更多
This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instant...This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded conse...In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To ...This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To comply with the discrete nature of networked systems, in contrast to most of the existing work for MASs under network imperfections,the agents are modeled by discrete-time dynamics. The communication network is considered to be undirected, its delay is considered to be time-varying but bounded, and its packet dropout is modeled by a Bernoulli distributed white sequence.Sufficient conditions in terms of linear matrix inequalities(LMIs)for asymptotic mean-square consensus stability are derived under network imperfections without considering external disturbances.A desired disturbance attenuation level in the presence of both external disturbances and network imperfections is also provided.A simulation example is given to verify the effectiveness of the proposed approach in coping with network imperfection and disturbances.展开更多
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60834002,60873021,and 61004042)the Youth Science Research Project of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-82)the Doctor Start-up Foundation of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-23)
文摘Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
基金National Natural Science Foundation of China(No.61374024)
文摘The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with nonlinear dynamics. The leader node is modeled as an autonomous nonlinear system which sends its information to one or more followers. Then, a simple and novel distributed protocol is proposed based only on the state feedback, under which the states of the followers ultimately synchronize to the leader. By using Lyapunov stability theorem and matrix theory, it is proved that the distributed leader-following consensus of nonlinear multi-agent systems with strict-feedback form is guaranteed by Lipschitz continuous control laws. Finally, some numerical simulations are provided to show the effectiveness of the developed method.
基金funded in part by the National Natural Science Foundation of China (Grant no. 61772352, 62172061, 61871422)National Key Research and Development Project (Grants nos. 2020YFB1711800 and 2020YFB1707900)+2 种基金the Science and Technology Project of Sichuan Province (Grants no. 2021YFG0152, 2021YFG0025, 2020YFG0479, 2020YFG0322, 2020GFW035, 2020GFW033, 2020YFH0071)the R&D Project of Chengdu City (Grant no. 2019-YF05-01790-GX)the Central Universities of Southwest Minzu University (Grants no. ZYN2022032)
文摘In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In order to improve the fault tolerance rate,a novel public blockchain consensus mechanism that applies a distributed computing architecture in a public network is proposed.Redundant calculation of blockchain ensures the credibility of the results;and the transactions with calculation results of a task are stored distributed in sequence in Directed Acyclic Graphs(DAG).The transactions issued by nodes are connected to form a net.The net can quickly provide node reputation evaluation that does not rely on third parties.Simulations show that our proposed blockchain has the following advantages:1.The task processing speed of the blockchain can be close to that of the fastest node in the entire blockchain;2.When the tasks’arrival time intervals and demanded working nodes(WNs)meet certain conditions,the network can tolerate more than 50%of malicious devices;3.No matter the number of nodes in the blockchain is increased or reduced,the network can keep robustness by adjusting the task’s arrival time interval and demanded WNs.
基金supported by the National Science Foundation of China (6097406260972119)the Chinese Ministry of Science and Intergovernmental Cooperation Project(2009DFA12870)
文摘The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters(MRPs).Then global stable distributed cooperative attitude control laws are proposed for different cases.In the first case,the control law guarantees the state consensus during the attitude synchronization.In the second case,the control law ensures both the attitudes synchronizing to a desired constant attitude and the angular velocities converging at zero.In the third case,an attitude consensus control law with bounded control input is proposed.Finally,the effectiveness and validity of the control laws are demonstrated by simulations of six rigid bodies formation flying.
文摘Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.
文摘A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800) and National Natural Science Foundation of China (60974059, 60736026, 61021063)
基金This work was financially supported by the Major Program of National Natural Science Foundation of China[grant numbers is not public]the National Natural Science Foundation of China[Grant No.61703427].
文摘Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.
基金supported by the National Natural Science Foundation of China (NSFC)(62222308, 62173181, 62073171, 62221004)the Natural Science Foundation of Jiangsu Province (BK20200744, BK20220139)+3 种基金Jiangsu Specially-Appointed Professor (RK043STP19001)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities (30920032203)。
文摘This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.
基金This work was supported in part by the National Key Research and Development Program of China(2021YFB3202200)Guangdong Basic and Applied Basic Research Foundation(2020B1515120071,2021B1515120017).
文摘In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.
基金National Natural Science Foundation of China(Nos.U22B2040 and 62233003)Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb12)。
文摘This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011, and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology(HUST),China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011,and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,HUST,China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.
文摘This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To comply with the discrete nature of networked systems, in contrast to most of the existing work for MASs under network imperfections,the agents are modeled by discrete-time dynamics. The communication network is considered to be undirected, its delay is considered to be time-varying but bounded, and its packet dropout is modeled by a Bernoulli distributed white sequence.Sufficient conditions in terms of linear matrix inequalities(LMIs)for asymptotic mean-square consensus stability are derived under network imperfections without considering external disturbances.A desired disturbance attenuation level in the presence of both external disturbances and network imperfections is also provided.A simulation example is given to verify the effectiveness of the proposed approach in coping with network imperfection and disturbances.