To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com...To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
False data injection attack(FDIA)is an attack that affects the stability of grid cyber-physical system(GCPS)by evading the detecting mechanism of bad data.Existing FDIA detection methods usually employ complex neural ...False data injection attack(FDIA)is an attack that affects the stability of grid cyber-physical system(GCPS)by evading the detecting mechanism of bad data.Existing FDIA detection methods usually employ complex neural networkmodels to detect FDIA attacks.However,they overlook the fact that FDIA attack samples at public-private network edges are extremely sparse,making it difficult for neural network models to obtain sufficient samples to construct a robust detection model.To address this problem,this paper designs an efficient sample generative adversarial model of FDIA attack in public-private network edge,which can effectively bypass the detectionmodel to threaten the power grid system.A generative adversarial network(GAN)framework is first constructed by combining residual networks(ResNet)with fully connected networks(FCN).Then,a sparse adversarial learning model is built by integrating the time-aligned data and normal data,which is used to learn the distribution characteristics between normal data and attack data through iterative confrontation.Furthermore,we introduce a Gaussian hybrid distributionmatrix by aggregating the network structure of attack data characteristics and normal data characteristics,which can connect and calculate FDIA data with normal characteristics.Finally,efficient FDIA attack samples can be sequentially generated through interactive adversarial learning.Extensive simulation experiments are conducted with IEEE 14-bus and IEEE 118-bus system data,and the results demonstrate that the generated attack samples of the proposed model can present superior performance compared to state-of-the-art models in terms of attack strength,robustness,and covert capability.展开更多
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po...As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.展开更多
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
This paper describes the architecture of global distributed storage system for data grid. It focue on the management and the capability for the maximum users and maximum resources on the Internet, as well as performan...This paper describes the architecture of global distributed storage system for data grid. It focue on the management and the capability for the maximum users and maximum resources on the Internet, as well as performance and other issues.展开更多
The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices...The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices, energy security and energy efficiency are converging to drive fundamental change in the way energy is produced, delivered and utilized. The electricity system of the future must produce and distribute electricity that is reliable, affordable and clean. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. This paper explores smart grid technologies, distributed generation systems, R & D efforts across Europe and the United States, and technical, economical and regulatory barriers facing modern utilities.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is d...With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is directly related to the future development and investment direction of rural power enterprises.At present,the evaluation of the production and operation of rural network enterprises and the development status of power network only relies on the experience of the evaluation personnel,sets the reference index,and forms the evaluation results through artificial scoring.Due to the strong subjective consciousness of the evaluation results,the practical guiding significance is weak.Therefore,distributed data mining method in rural power enterprises status evaluation was proposed which had been applied in many fields,such as food science,economy or chemical industry.The distributed mathematical model was established by using principal component analysis(PCA)and regression analysis.By screening various technical indicators and determining their relevance,the reference value of evaluation results was improved.Combined with statistical program for social sciences(SPSS)data analysis software,the operation status of rural network enterprises was evaluated,and the rationality,effectiveness and economy of the evaluation was verified through comparison with current evaluation results and calculation examples of actual grid operation data.展开更多
Smart grid gets more and more popular today. Distributed generation is one of the key technologies, and especially, the integration problem of the distributed generation is an important issue. Especially, the location...Smart grid gets more and more popular today. Distributed generation is one of the key technologies, and especially, the integration problem of the distributed generation is an important issue. Especially, the location and capacity of the distributed generation play an important role for the performance of the distribution network. In this paper, an optimization model to minimize the loss cost of the unsatisfied demand is given. This model is based on a reliability computing method which avoiding power flow calculation in a previous work. Then the model is used on the IEEE-123 nodes experiment network and a result of five distributed generation placement is got.展开更多
Incremental LOD can be transmitted on the network as a stream, then users on the clients can easily catch the skeleton of terrain without downloading all the data from the server. Detailed information in a local part ...Incremental LOD can be transmitted on the network as a stream, then users on the clients can easily catch the skeleton of terrain without downloading all the data from the server. Detailed information in a local part can be added gradually when users zoom it in without redundant data transmission in this procedure. To do this, an incremental LOD method is put forward according to the regular arrangement of grid. This method applies arbitrary sized grid terrains and is not restricted to square ones with a side measuring 2 k + 1 samples. Maximum height errors are recorded when the LOD is preprocessed and it can be visualized with the geometrical Mipmaps to reduce the screen error.展开更多
The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big dat...The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big data collection,transmission,and storage,it is difficult to do data aggregation in real-world power systems,which directly retards the effective implementation of smart grid analytics.Federated learning,an advanced distributed learning method proposed by Google,seems a promising solution to the above issues.Nevertheless,it relies on a server node to complete model aggregation and the framework is limited to scenarios where data are independent and identically distributed.Thus,we here propose a serverless distributed learning platform based on blockchain to solve the above two issues.In the proposed platform,the task of machine learning is performed according to smart contracts,and encrypted models are aggregated via a mechanism of knowledge distillation.Through this proposed method,a server node is no longer required and the learning ability is no longer limited to independent and identically distributed scenarios.Experiments on a public electrical grid dataset will verify the effectiveness of the proposed approach.展开更多
We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, di...We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.展开更多
Smart grid expertise emphasises on the compound connections of the electricity to the grid, along with computing, control and communication interface. It will bring together in future smart infrastructure for power sy...Smart grid expertise emphasises on the compound connections of the electricity to the grid, along with computing, control and communication interface. It will bring together in future smart infrastructure for power system. Investigating these complex dynamic interactions is crucial for the efficiency and robustness of the emerging smart grid. In particular, it is one of the key elements for smart-grids to establish the dynamics among sources of grid. This paper proposes the vital operation of renewable energy sources (RES) like Solar Photovoltaic (PV), wind energy with existing grid of a. c. network of power system in view of cognitive reliable operation of RES as add-on source of power. The research presents sequence of operation of these sources by optimal power flow based on power flow chart for demand side management as a smart grid of power system. The system fulfils realistic operation for power system, based on fundamentals of power system, therefore a necessary research topology is developed, for well-regarded schemes of RES for setting up a pilot model so that demand side load should not be hampered and same is verified for linear and non-linear loads of electrical networks.展开更多
In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generatio...In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generation in form of distributed generation and Smart Power Grid (SPG) has great opportunity and potentially can eradicate several issues associated with energy efficiency, energy security and the drawback of aging power system infrastructures. In order to meet the rising electrical power demand and increasing service quality as well as reducing pollution, the existing power grid infrastructure should be developed into Smart Grid (SG) that is flexible for interconnectivity with the distributed generation. However, integrating distributed generation to power system causes several technical issues especially system stability. To make the power grid become “smarter”, particularly in terms of stability, Flexible AC Transmission System (FACTS) device especially Static VAR Compensator (SVC) is used. This paper explores Smart Grid technologies and distributed generation systems. Furthermore, it discusses the impact of distributed generation on Smart Grid, particularly its system stability after installing distributed generation in the Smart Grid. This was done by examining the system stability during interconnection and faults on the system and validated with Dig-SILENT Power Factory Software V 13.2.展开更多
Recently, researches on distributed data mining by making use of grid are in trend. This paper introduces a data mining algorithm by means of distributed decision-tree,which has taken the advantage of conveniences and...Recently, researches on distributed data mining by making use of grid are in trend. This paper introduces a data mining algorithm by means of distributed decision-tree,which has taken the advantage of conveniences and services supplied by the computing platform-grid,and can perform a data mining of distributed classification on grid.展开更多
At present, the development of distribution network can’t meet the requirements of rapid economic development. The traditional single energy supply is difficult to meet the request, and distributed energy supply has ...At present, the development of distribution network can’t meet the requirements of rapid economic development. The traditional single energy supply is difficult to meet the request, and distributed energy supply has a lot of advantages compared to it, particularly it's close to the end users, and they have been developed well and applied widely in recent years. This paper summarizes the features and current development of the distributed energy supply, and mainly describes the grid-connection model of distributed energy supply. Base on the mathematic grid-connection model of distributed power sources with different generation principles as well as that energy storage, the treatment of these models in distribution network power flow analysis is also presented.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
基金funded by National Key Research and Development Program of China (2021YFB2601400)。
文摘To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
基金supported in part by the the Natural Science Foundation of Shanghai(20ZR1421600)Research Fund of Guangxi Key Lab of Multi-Source Information Mining&Security(MIMS21-M-02).
文摘False data injection attack(FDIA)is an attack that affects the stability of grid cyber-physical system(GCPS)by evading the detecting mechanism of bad data.Existing FDIA detection methods usually employ complex neural networkmodels to detect FDIA attacks.However,they overlook the fact that FDIA attack samples at public-private network edges are extremely sparse,making it difficult for neural network models to obtain sufficient samples to construct a robust detection model.To address this problem,this paper designs an efficient sample generative adversarial model of FDIA attack in public-private network edge,which can effectively bypass the detectionmodel to threaten the power grid system.A generative adversarial network(GAN)framework is first constructed by combining residual networks(ResNet)with fully connected networks(FCN).Then,a sparse adversarial learning model is built by integrating the time-aligned data and normal data,which is used to learn the distribution characteristics between normal data and attack data through iterative confrontation.Furthermore,we introduce a Gaussian hybrid distributionmatrix by aggregating the network structure of attack data characteristics and normal data characteristics,which can connect and calculate FDIA data with normal characteristics.Finally,efficient FDIA attack samples can be sequentially generated through interactive adversarial learning.Extensive simulation experiments are conducted with IEEE 14-bus and IEEE 118-bus system data,and the results demonstrate that the generated attack samples of the proposed model can present superior performance compared to state-of-the-art models in terms of attack strength,robustness,and covert capability.
基金supported by the National Natural Science Foundation of China with Grants 61771289 and 61832012the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+3 种基金Shandong Natural Science Foundation Major Basic Research with Grant ZR2019ZD10Shandong Key Research and Development Program with Grant 2019GGX1050Shandong Major Agricultural Application Technology Innovation Project with Grant SD2019NJ007National Natural Science Foundation of Shandong Province Grants ZR2022MF304.
文摘As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘This paper describes the architecture of global distributed storage system for data grid. It focue on the management and the capability for the maximum users and maximum resources on the Internet, as well as performance and other issues.
文摘The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices, energy security and energy efficiency are converging to drive fundamental change in the way energy is produced, delivered and utilized. The electricity system of the future must produce and distribute electricity that is reliable, affordable and clean. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. This paper explores smart grid technologies, distributed generation systems, R & D efforts across Europe and the United States, and technical, economical and regulatory barriers facing modern utilities.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金Supported by Funding(2017RAXXJ075)from Harbin Applied Technology Research and Development Project
文摘With the reform of rural network enterprise system,the speed of transfer property rights in rural power enterprises is accelerated.The evaluation of the operation and development status of rural power enterprises is directly related to the future development and investment direction of rural power enterprises.At present,the evaluation of the production and operation of rural network enterprises and the development status of power network only relies on the experience of the evaluation personnel,sets the reference index,and forms the evaluation results through artificial scoring.Due to the strong subjective consciousness of the evaluation results,the practical guiding significance is weak.Therefore,distributed data mining method in rural power enterprises status evaluation was proposed which had been applied in many fields,such as food science,economy or chemical industry.The distributed mathematical model was established by using principal component analysis(PCA)and regression analysis.By screening various technical indicators and determining their relevance,the reference value of evaluation results was improved.Combined with statistical program for social sciences(SPSS)data analysis software,the operation status of rural network enterprises was evaluated,and the rationality,effectiveness and economy of the evaluation was verified through comparison with current evaluation results and calculation examples of actual grid operation data.
文摘Smart grid gets more and more popular today. Distributed generation is one of the key technologies, and especially, the integration problem of the distributed generation is an important issue. Especially, the location and capacity of the distributed generation play an important role for the performance of the distribution network. In this paper, an optimization model to minimize the loss cost of the unsatisfied demand is given. This model is based on a reliability computing method which avoiding power flow calculation in a previous work. Then the model is used on the IEEE-123 nodes experiment network and a result of five distributed generation placement is got.
文摘Incremental LOD can be transmitted on the network as a stream, then users on the clients can easily catch the skeleton of terrain without downloading all the data from the server. Detailed information in a local part can be added gradually when users zoom it in without redundant data transmission in this procedure. To do this, an incremental LOD method is put forward according to the regular arrangement of grid. This method applies arbitrary sized grid terrains and is not restricted to square ones with a side measuring 2 k + 1 samples. Maximum height errors are recorded when the LOD is preprocessed and it can be visualized with the geometrical Mipmaps to reduce the screen error.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52007173 and U19B2042)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20E070002)Zhejiang Lab’s Talent Fund for Young Professionals(Grant No.2020KB0AA01).
文摘The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big data collection,transmission,and storage,it is difficult to do data aggregation in real-world power systems,which directly retards the effective implementation of smart grid analytics.Federated learning,an advanced distributed learning method proposed by Google,seems a promising solution to the above issues.Nevertheless,it relies on a server node to complete model aggregation and the framework is limited to scenarios where data are independent and identically distributed.Thus,we here propose a serverless distributed learning platform based on blockchain to solve the above two issues.In the proposed platform,the task of machine learning is performed according to smart contracts,and encrypted models are aggregated via a mechanism of knowledge distillation.Through this proposed method,a server node is no longer required and the learning ability is no longer limited to independent and identically distributed scenarios.Experiments on a public electrical grid dataset will verify the effectiveness of the proposed approach.
文摘We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.
文摘Smart grid expertise emphasises on the compound connections of the electricity to the grid, along with computing, control and communication interface. It will bring together in future smart infrastructure for power system. Investigating these complex dynamic interactions is crucial for the efficiency and robustness of the emerging smart grid. In particular, it is one of the key elements for smart-grids to establish the dynamics among sources of grid. This paper proposes the vital operation of renewable energy sources (RES) like Solar Photovoltaic (PV), wind energy with existing grid of a. c. network of power system in view of cognitive reliable operation of RES as add-on source of power. The research presents sequence of operation of these sources by optimal power flow based on power flow chart for demand side management as a smart grid of power system. The system fulfils realistic operation for power system, based on fundamentals of power system, therefore a necessary research topology is developed, for well-regarded schemes of RES for setting up a pilot model so that demand side load should not be hampered and same is verified for linear and non-linear loads of electrical networks.
文摘In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generation in form of distributed generation and Smart Power Grid (SPG) has great opportunity and potentially can eradicate several issues associated with energy efficiency, energy security and the drawback of aging power system infrastructures. In order to meet the rising electrical power demand and increasing service quality as well as reducing pollution, the existing power grid infrastructure should be developed into Smart Grid (SG) that is flexible for interconnectivity with the distributed generation. However, integrating distributed generation to power system causes several technical issues especially system stability. To make the power grid become “smarter”, particularly in terms of stability, Flexible AC Transmission System (FACTS) device especially Static VAR Compensator (SVC) is used. This paper explores Smart Grid technologies and distributed generation systems. Furthermore, it discusses the impact of distributed generation on Smart Grid, particularly its system stability after installing distributed generation in the Smart Grid. This was done by examining the system stability during interconnection and faults on the system and validated with Dig-SILENT Power Factory Software V 13.2.
文摘Recently, researches on distributed data mining by making use of grid are in trend. This paper introduces a data mining algorithm by means of distributed decision-tree,which has taken the advantage of conveniences and services supplied by the computing platform-grid,and can perform a data mining of distributed classification on grid.
文摘At present, the development of distribution network can’t meet the requirements of rapid economic development. The traditional single energy supply is difficult to meet the request, and distributed energy supply has a lot of advantages compared to it, particularly it's close to the end users, and they have been developed well and applied widely in recent years. This paper summarizes the features and current development of the distributed energy supply, and mainly describes the grid-connection model of distributed energy supply. Base on the mathematic grid-connection model of distributed power sources with different generation principles as well as that energy storage, the treatment of these models in distribution network power flow analysis is also presented.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.