For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algor...For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.展开更多
Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of mul...Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.展开更多
文摘For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.
基金This work was financially supported by the Major Program of National Natural Science Foundation of China[grant numbers is not public]the National Natural Science Foundation of China[Grant No.61703427].
文摘Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.