Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti...This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.展开更多
This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and position...This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and positions,while the followers can measure the relative bearings or(angular and linear)velocities in their unknown local coordinate frames.For the orientation estimation,the local relative bearings are used to obtain the relative orientations among the agents,based on which a distributed orientation estimation algorithm is proposed for each follower to estimate its orientation.For the position estimation,the local relative bearings are used to obtain the position constraints among the agents,and a distributed position estimation algorithm is proposed for each follower to estimate its position by solving its position constraints.Both the orientation and position estimation errors converge to zero asymptotically.A simulation example is given to verify the theoretical results.展开更多
The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are...The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the intera...In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.展开更多
To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation f...To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.展开更多
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing th...In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution.Our approach can be applied to both synchronous and asynchronous communication protocols.Specifically,we propose the distributed subgradient with uncoordinated dynamic stepsizes(DS-UD)algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol.Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem.Moreover,the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works.Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protectio...Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protection relay should accommodate the system changes according to the system conditions and topologies. As part of developmental aspect of Distributed Artificial Intelligent, Multi Agent System (MAS) is a challenging method for improving the intelligent properties of relay protection. This paper introduces the use of MAS approach on radial distribution system protection dominated with DER using dispersed adaptive rule-based protection supported by distributed database agent. The simulation results confirmed that the proposed algorithm can respond within 15.05 ms.展开更多
Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data...Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance.展开更多
Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of mul...Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.展开更多
In multi-agent system, agents work together for solving complex tasks and reaching common goals. In this paper, we propose a cognitive model for multi-agent collaboration. Based on the cognitive model, an agent archit...In multi-agent system, agents work together for solving complex tasks and reaching common goals. In this paper, we propose a cognitive model for multi-agent collaboration. Based on the cognitive model, an agent architecture will also be presented. This agent has BDI, awareness and policy driven mechanism concurrently. These approaches are integrated in one agent that will make multi-agent collaboration more practical in the real world.展开更多
As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environm...As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environment on the Internet, it is of great significance to research a system flexible and capable in dynamic evolution that can find a collaboration method for agents which can be used in dynamic evolution process. With such a method, agents accomplish tasks for an overall target and at the same time, the collaborative relationship of agents can be adjusted with the change of environment. A method of task decomposition and collaboration of agents by improved contract net protocol is introduced. Finally, analysis on the result of the experiments is performed to verify the improved contract net protocol can greatly increase the efficiency of communication and collaboration in multi-agent system.展开更多
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
基金supported in part by the National Natural Science Foundation of China(NSFC)(61773260)the Ministry of Science and Technology (2018YFB130590)。
文摘This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.
基金supported by Nanyang Technological University,Singapore under the Wallenberg-NTU Presidential Postdoctoral Fellowship and the Natural Science Foundation in Heilongjiang Province,China(YQ2022F003).
文摘This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and positions,while the followers can measure the relative bearings or(angular and linear)velocities in their unknown local coordinate frames.For the orientation estimation,the local relative bearings are used to obtain the relative orientations among the agents,based on which a distributed orientation estimation algorithm is proposed for each follower to estimate its orientation.For the position estimation,the local relative bearings are used to obtain the position constraints among the agents,and a distributed position estimation algorithm is proposed for each follower to estimate its position by solving its position constraints.Both the orientation and position estimation errors converge to zero asymptotically.A simulation example is given to verify the theoretical results.
基金This work is supported by the National Key Research and Development Program(No.2022YFB2702101)Shaanxi Key Industrial Province Projects(2021ZDLGY03-02,2021ZDLGY03-08)the National Natural Science Foundation of China under Grants 62272394 and 92152301.
文摘The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
基金supported by the National Natural Science Foundation of China(61303211)Zhejiang Provincial Natural Science Foundation of China(LY17F030003,LY15F030009)
文摘In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 60525303)the National Natural Science Foundation of China (Grant No. 60704009)+1 种基金the Key Project for Natural Science Research of the Hebei Educational Department (Grant No. ZD200908)the Doctorial Fund of Yanshan University (Grant No. B203)
文摘To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
基金supported by the Key Research and Development Project in Guangdong Province(2020B0101050001)the National Science Foundation of China(61973214,61590924,61963030)the Natural Science Foundation of Shanghai(19ZR1476200)。
文摘In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution.Our approach can be applied to both synchronous and asynchronous communication protocols.Specifically,we propose the distributed subgradient with uncoordinated dynamic stepsizes(DS-UD)algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol.Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem.Moreover,the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works.Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
文摘Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protection relay should accommodate the system changes according to the system conditions and topologies. As part of developmental aspect of Distributed Artificial Intelligent, Multi Agent System (MAS) is a challenging method for improving the intelligent properties of relay protection. This paper introduces the use of MAS approach on radial distribution system protection dominated with DER using dispersed adaptive rule-based protection supported by distributed database agent. The simulation results confirmed that the proposed algorithm can respond within 15.05 ms.
文摘Distributed Data Mining is expected to discover preciously unknown, implicit and valuable information from massive data set inherently distributed over a network. In recent years several approaches to distributed data mining have been developed, but only a few of them make use of intelligent agents. This paper provides the reason for applying Multi-Agent Technology in Distributed Data Mining and presents a Distributed Data Mining System based on Multi-Agent Technology that deals with heterogeneity in such environment. Based on the advantages of both the CS model and agent-based model, the system is being able to address the specific concern of increasing scalability and enhancing performance.
基金This work was financially supported by the Major Program of National Natural Science Foundation of China[grant numbers is not public]the National Natural Science Foundation of China[Grant No.61703427].
文摘Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications.This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme.The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors.We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included simultaneously.The acceleration constraint is regarded as the changing rate of velocity based on some reasonable assumptions so as to simplify the analysis.Theoretical analysis shows that the constrained system steered by the proposed protocol achieves consensus asymptotically if the switching interaction graphs always have a spanning tree.Numerical examples are also provided to illustrate the validity of the algorithm.
文摘In multi-agent system, agents work together for solving complex tasks and reaching common goals. In this paper, we propose a cognitive model for multi-agent collaboration. Based on the cognitive model, an agent architecture will also be presented. This agent has BDI, awareness and policy driven mechanism concurrently. These approaches are integrated in one agent that will make multi-agent collaboration more practical in the real world.
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProjects(K5051223008,BDY221411)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AA02A603)supported by the High-Tech Research and Development Program of China
文摘As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environment on the Internet, it is of great significance to research a system flexible and capable in dynamic evolution that can find a collaboration method for agents which can be used in dynamic evolution process. With such a method, agents accomplish tasks for an overall target and at the same time, the collaborative relationship of agents can be adjusted with the change of environment. A method of task decomposition and collaboration of agents by improved contract net protocol is introduced. Finally, analysis on the result of the experiments is performed to verify the improved contract net protocol can greatly increase the efficiency of communication and collaboration in multi-agent system.