For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys...Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.展开更多
Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target paramet...Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.展开更多
A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of...A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of sensors with the predetermined size and implementing the power allocation and bandwidth strategies among them,this algorithm can help achieving a better performance within the same resource constraints.Firstly,the Bayesian Cramer-Rao bound(BCRB)is derived from it.Secondly,a criterion for minimizing the BCRB at the target location among all targets tracking in a certain range is derived.Thirdly,the optimization problem involved with three variable vectors is formulated,which can be simplified by deriving the relationship between the optimal power allocation vector and the bandwidth allocation vector.Then,the simplified optimization problem is solved by the cyclic minimization algorithm incorporated with the sequential parametric convex approximation(SPCA)algorithm.Finally,the validity of the proposed method is demonstrated with simulation results.展开更多
The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation ...The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.展开更多
The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while...The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improv...The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.展开更多
A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO)...A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.展开更多
This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signa...This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.展开更多
An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prio...An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.展开更多
This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, ran...This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.展开更多
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional an...The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional antenna geometry with a prior direction, the trace-optimal (TO) criterion (minimizing the trace) on the av- erage Cramer-Rao bound (CRB) matrix is employed. A qualitative explanation for antenna geometry is provided, which is a combi- natorial optimization problem. In the numerical example section, it is shown that the antenna geometries, designed by the proposed strategy, outperform the representative DF antenna geometries.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to t...How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.展开更多
The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),...The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),UCA can obtain the similar performance with fewer antennas and can achieve DOA estimation in the range of 360°.This paper investigates the signal model of the MIMO radar with UCA and 2-D DOA estimation with the multiple signal classification(MUSIC)method.The CRB expressions are derived for DOA estimation and the relationship between the CRB and several parameters of the MIMO radar system is discussed.The simulation results show that more antennas and larger radius of the UCA leads to lower CRB and more accurate DOA estimation performance for the monostatic MIMO radar.Also the interference during the 2-D DOA estimation will be well restrained when the number of the transmitting antennas is different from that of the receiving antennas.展开更多
Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal, the randomness ...Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multiple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.展开更多
We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy i...We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi- definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
基金supported by the National Natural Science Foundation of China(61601504)。
文摘Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.
文摘Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.
基金supported by the National Natural Science Foundation of China(615015136140146941301481)
文摘A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of sensors with the predetermined size and implementing the power allocation and bandwidth strategies among them,this algorithm can help achieving a better performance within the same resource constraints.Firstly,the Bayesian Cramer-Rao bound(BCRB)is derived from it.Secondly,a criterion for minimizing the BCRB at the target location among all targets tracking in a certain range is derived.Thirdly,the optimization problem involved with three variable vectors is formulated,which can be simplified by deriving the relationship between the optimal power allocation vector and the bandwidth allocation vector.Then,the simplified optimization problem is solved by the cyclic minimization algorithm incorporated with the sequential parametric convex approximation(SPCA)algorithm.Finally,the validity of the proposed method is demonstrated with simulation results.
基金supported in part by the National Natural Science Foundation of China (No. 61971220)the Fundamental Research Funds for the Central Universities of Nanjing University of Aeronautics and Astronautics(NUAA)(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China (No. BK20181289)。
文摘The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.
基金the National Natural Science Foundation of China (No. 60272009, No. 60572090, No. 60472045, No. 60496313 and No. 60602009).
文摘The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.
基金supported by the National Natural Science Foundation of China (60702015)
文摘A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.
基金supported by the Foundation of Chinese People’s Liberation Army General Equipment Department(41101020303)
文摘This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.
基金supported by the National Natural Science Foundation of China(61601504)
文摘An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.
基金supported by the Innovation Project for Excellent Postgraduates of Hunan Province (CX2011B018)the Innovation Project for Excellent Postgraduates of National University of Defense Technology (B110402)
文摘This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6107211761302142)
文摘The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional antenna geometry with a prior direction, the trace-optimal (TO) criterion (minimizing the trace) on the av- erage Cramer-Rao bound (CRB) matrix is employed. A qualitative explanation for antenna geometry is provided, which is a combi- natorial optimization problem. In the numerical example section, it is shown that the antenna geometries, designed by the proposed strategy, outperform the representative DF antenna geometries.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
基金supported by the National Natural Science Foundation of China(61671176 61671173)the Fundamental Research Funds for the Center Universities(HIT.MKSTISP.2016 13)
文摘How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.
基金supported by the National Natural Science Foundation of China(Nos.61071163,61071164,61471191)project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),UCA can obtain the similar performance with fewer antennas and can achieve DOA estimation in the range of 360°.This paper investigates the signal model of the MIMO radar with UCA and 2-D DOA estimation with the multiple signal classification(MUSIC)method.The CRB expressions are derived for DOA estimation and the relationship between the CRB and several parameters of the MIMO radar system is discussed.The simulation results show that more antennas and larger radius of the UCA leads to lower CRB and more accurate DOA estimation performance for the monostatic MIMO radar.Also the interference during the 2-D DOA estimation will be well restrained when the number of the transmitting antennas is different from that of the receiving antennas.
基金Supported by the National Natural Science Foundation of China (No. 61071145)Universities Natural Science Research Project of Jiangsu Province (No.11KJB510008)
文摘Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multiple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.
基金the National Natural Science Foundation of China (No. 61302153)
文摘We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi- definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.