High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Ф-OTDR) technology also brings in high nuisance alarm rates (NARs...High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Ф-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.展开更多
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal ...A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz - 1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.展开更多
At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on...At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.展开更多
We have demonstrated a distributed vibration sensor based on phase-sensitive optical time-domain reflectometer (φ-OTDR) system exhibiting immunity to the laser phase noise. Two laser sources with different linewidth ...We have demonstrated a distributed vibration sensor based on phase-sensitive optical time-domain reflectometer (φ-OTDR) system exhibiting immunity to the laser phase noise. Two laser sources with different linewidth and phase noise levels are used in the φ-OTDR system, respectively. Based on the phase noise power spectrum density of both lasers, the laser phase is almost unchanged during an extremely short period of time, hence, the impact of phase noise can be suppressed effectively through phase difference between the Rayleigh scattered light from two adjacent sections of the fiber which define the gauge length. Based on the phase difference method, the external vibration can be located accurately at 41.01 km by the(φ-OTDR system incorporating these two lasers. Meanwhile, the average signal-to-noise ratio (SNR) of the retrieved vibration signal by using Laser I is found to be -37.7 dB, which is comparable to that of -37.5 dB by using Laser II although the linewidth and the phase noise level of the two lasers are distinct. The obtained results indicate that the phase difference method can enhance the performance of(φ-OTDR system with laser phase-noise immunity for distributed vibration sensing, showing potential application in oil-gas pipeline monitoring, perimeter security, and other fields.展开更多
基金The authors gratefully acknowledge the supports provided for this research by Youth Foundation (Grant No. 61301275), Major Instrument Special Program (Grant No. 41527805), the Major Program (Grant No. 61290312) of the National Science Foundation of China (NSFC), and the fund of State Grid Corporation of China: Research on distributed multi-parameter sensing and measurement control technology for electric power optical fiber communication networks (Grant No. 5455HT160014). This work is also supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1218) and the 111 Project (B14039).
文摘High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Ф-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
基金This work is supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61290311).
文摘A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz - 1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
文摘At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.
文摘We have demonstrated a distributed vibration sensor based on phase-sensitive optical time-domain reflectometer (φ-OTDR) system exhibiting immunity to the laser phase noise. Two laser sources with different linewidth and phase noise levels are used in the φ-OTDR system, respectively. Based on the phase noise power spectrum density of both lasers, the laser phase is almost unchanged during an extremely short period of time, hence, the impact of phase noise can be suppressed effectively through phase difference between the Rayleigh scattered light from two adjacent sections of the fiber which define the gauge length. Based on the phase difference method, the external vibration can be located accurately at 41.01 km by the(φ-OTDR system incorporating these two lasers. Meanwhile, the average signal-to-noise ratio (SNR) of the retrieved vibration signal by using Laser I is found to be -37.7 dB, which is comparable to that of -37.5 dB by using Laser II although the linewidth and the phase noise level of the two lasers are distinct. The obtained results indicate that the phase difference method can enhance the performance of(φ-OTDR system with laser phase-noise immunity for distributed vibration sensing, showing potential application in oil-gas pipeline monitoring, perimeter security, and other fields.