A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light t...Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa...Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.展开更多
Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal t...Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.展开更多
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement dista...A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.展开更多
A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1 ~ N optical switch was intelligently controlled by a per...A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1 ~ N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.展开更多
Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technol...Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technology in Nanjing University are reviewed.The key technologies to make BOFS with ultra-long distance,high spatial resolution,and fast measuring speed are discussed and realized.展开更多
The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rar...The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rarely reported.In this study,a laboratory model test and an in situ monitoring test were conducted.An optical frequency domain reflectometer(OFDR)with high spatial resolution(1 mm)and high accuracy(10-6)was used to record the soil strain responses to groundwater table and varied loads.The results indicated that the fiber-optic measurements can accurately locate the swelling and compressive zones.During the loading process,the interlock between calcareous sand particles was detected,which increased the internal friction angle of soil.The foundation deformation above the sliding surface was dominated by compression,and the soil was continuously compressed beneath the sliding surface.After 26e48 h,calcareous sand swelling occurred gradually above the water table,which was primarily dependent on capillary water.The swelling of the soil beneath the groundwater table was completed rapidly within less than 2 h.When the groundwater table and load remain constant,the compression creep behavior can be described by the Yasong-Wang model with R2¼0.993.The daily periodically varying in situ deformation of calcareous sand primarily occurs between the highest and lowest groundwater tables,i.e.4.2e6.2 m deep.The tuff interlayers with poor water absorption capacity do not swell or compress,but they produce compressive strain under the influence of deformed calcareous sand layers.展开更多
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an e...Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.展开更多
In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring...In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.展开更多
In this paper,we present an application of distributed fiber optic sensor(DFOS)technology to measure the strain of a continuous flight auger(CFA)test pile with a central reinforcement bar bundle,during a static load t...In this paper,we present an application of distributed fiber optic sensor(DFOS)technology to measure the strain of a continuous flight auger(CFA)test pile with a central reinforcement bar bundle,during a static load test carried out in London.Being distributed in nature,DFOS gives much more information about the pile performance as compared to traditional point sensors,such as identifying cross-sectional irregularities or other anomalies.The strain profiles recorded along the depth of the piles from the DFOS were used to calculate pile deformation(contraction),shaft friction,and tip resistance under various loads.Based on this pile load test,a finite element(FE)analysis was performed using a one-dimensional nonlinear load-transfer model.Calibrated by the shaft friction and tip resistance derived from the monitored data,the FE model was able to simulate the pile and soil performance during the load testing with good accuracy.The effect of the reinforcement cage and central reinforcement bar bundle were investigated,and it was found that the addition of a reinforcement cage would reduce the pile settlement by up to 20%.展开更多
We propose and experimentally validate an optical true time delay beamforming scheme with straightforward integration into hybrid optical/millimeter(mm)-wave access networks. In the proposed approach, the most compl...We propose and experimentally validate an optical true time delay beamforming scheme with straightforward integration into hybrid optical/millimeter(mm)-wave access networks. In the proposed approach, the most complex functions, including the beamforming network, are implemented in a central office, reducing the complexity and cost of remote antenna units. Different cores in a multi-core fiber are used to distribute the modulated signals to high-speed photodetectors acting as heterodyne mixers. The mm-wave carrier frequency is fixed to 50 GHz(VBand), thereby imposing a progressive delay between antenna elements of a few picoseconds. That true time delay is achieved with an accuracy lower than 1 ps and low phase noise.展开更多
We use distributed fiber optic strain sensing to examine swelling of the fiber’s polymer coating.The distributed sensing technique that uses unmodified low-cost telecom fibers opens a new dimension of applications th...We use distributed fiber optic strain sensing to examine swelling of the fiber’s polymer coating.The distributed sensing technique that uses unmodified low-cost telecom fibers opens a new dimension of applications that include leak detection,monitoring of water quality,and waste systems.On a short-range length scale,the technology enables“lab-on-a-fiber”applications for food processing,medicine,and biosensing for instance.The chemical sensing is realized with unmodified low-cost telecom optical fibers,namely,by using swelling in the coating material of the fiber to detect specific chemicals.Although generic and able to work in various areas such as environmental monitoring,food analysis,agriculture or security,the proposed chemical sensors can be targeted for water quality monitoring,or medical diagnostics where they present the most groundbreaking nature.Moreover,the technique is without restrictions applicable to longer range installations.展开更多
Phase-sensitive optical time domain reflectometry(Ф-OTDR)is an effective way to detect vibrations and acoustic waves with high sensitivity,by interrogating coherent Rayleigh backscattering light in sensing fiber.In p...Phase-sensitive optical time domain reflectometry(Ф-OTDR)is an effective way to detect vibrations and acoustic waves with high sensitivity,by interrogating coherent Rayleigh backscattering light in sensing fiber.In particular,fiber-optic distributed acoustic sensing(DAS)based on theФ-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection,borehole seismic acquisition,structure health monitoring,etc.,in recent years,with superior advantages such as long sensing range,fast response speed,wide sensing bandwidth,low operation cost and long service lifetime.Significant advances in research and development(R&D)ofФ-OTDR have been made since 2014.In this review,we present a historical review ofФ-OTDR and then summarize the recent progress ofФ-OTDR in the Fiber Optics Research Center(FORC)at University of Electronic Science and Technology of China(UESTC),which is the first group to carry out R&D ofФ-OTDR and invent ultra-sensitive DAS(uDAS)seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019.It can be seen that theФ-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.展开更多
The distributed optical fiber surface plasmon resonance(SPR)sensors have attracted wide attention in biosensing and chemical sensing applications.However,due to the limitation of their sensing structure,it is difficul...The distributed optical fiber surface plasmon resonance(SPR)sensors have attracted wide attention in biosensing and chemical sensing applications.However,due to the limitation of their sensing structure,it is difficult to adjust their res-onant wavelength and sensitivity.Here,novel and flexible cascaded helical-core fiber[HCF)SPR sensors are proposed theoretically and experimentally for distributed sensing applications.It is shown that the resonant wavelength and sensitivity of the sensors can be conveniently controlled by adjusting the twist pitch of the helical core.A high sensitivity of 11,180 nm/RIU for refractive-index measurement ranging from 1.355 to 1.365 is realized experimentally when the twist pitch of the helical core is 1.5 mm.It is worth noting that the sensitivity can be further improved by reducing the twist pitch.For example,the sensitivity of the sensor with a twist pitch of 1.4 mm can theoretically exceed 20,000 nm/RIU.This work opens up a new way to implement multi-parameter or distributed measurement,especially to establish sensing networks integrated in a single-core fiber or a multi-core fiber.展开更多
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
文摘Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.
基金support provided by the National Natural Science Foundation of China(Grant Nos.42225702,and 42077232)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022).
文摘Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.
基金Supported by the National Natural Science Foundation of China (50375026,50375028)
文摘Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.
文摘A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
基金The authors gratefully acknowledge the previous supports provided by the National High Technology Research and Development Program of China (863 Program, Grant No. 2007AA01Z245), and the supports provided for this research by the Major Program (Grant No. 61290312) and Youth Foundation (Grant No. 61301275) of the National Science Foundation of China (NSFC), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2011 J010). This work is also supported by Program for Changjiang Scholars and Innovative Research Team inUniversity (PCSIRT, IRTI218), and the 111 Project (B14039). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1 ~ N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.
基金This work was supported by National Basic Research Program of China(973 Program)under Grant No.2010CB327803 and National Natural Science Foundation of China(61027617).
文摘Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technology in Nanjing University are reviewed.The key technologies to make BOFS with ultra-long distance,high spatial resolution,and fast measuring speed are discussed and realized.
基金support provided by the National Natural Science Foundation of China(Grant No.41907244)China Postdoctoral Science Foundation(Grant No.2019M653180)the Project of the Key Laboratory of Soft Soil and Environmental Geotechnical Ministry of Education(Grant No.2019P05)is gratefully acknowledged.
文摘The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rarely reported.In this study,a laboratory model test and an in situ monitoring test were conducted.An optical frequency domain reflectometer(OFDR)with high spatial resolution(1 mm)and high accuracy(10-6)was used to record the soil strain responses to groundwater table and varied loads.The results indicated that the fiber-optic measurements can accurately locate the swelling and compressive zones.During the loading process,the interlock between calcareous sand particles was detected,which increased the internal friction angle of soil.The foundation deformation above the sliding surface was dominated by compression,and the soil was continuously compressed beneath the sliding surface.After 26e48 h,calcareous sand swelling occurred gradually above the water table,which was primarily dependent on capillary water.The swelling of the soil beneath the groundwater table was completed rapidly within less than 2 h.When the groundwater table and load remain constant,the compression creep behavior can be described by the Yasong-Wang model with R2¼0.993.The daily periodically varying in situ deformation of calcareous sand primarily occurs between the highest and lowest groundwater tables,i.e.4.2e6.2 m deep.The tuff interlayers with poor water absorption capacity do not swell or compress,but they produce compressive strain under the influence of deformed calcareous sand layers.
基金funding support from the National Natural Science Foundation of China (Grant No. 42225702)the Central Government Guided Local Science and Technology Development Fund (Grant No. 226Z5404G)the Natural Science Foundation of Hebei Province,China (Grant No. D2022508002)。
文摘Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.
基金supported by the National Natural Science Foundation of China(Nos.42171128,41971076)the National Key Research and Development Program of China(No.2018YFC1505306)the Key Research and Development Program of Heilongjiang Province(No.GA21A501).
文摘In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.
基金The authors thank the EPSRC and Innovate UK for funding this research through the Cambridge Centre for Smart Infrastructure and Construction(CSIC)Innovation and Knowledge Centre(EPSRC grand reference number EP/L010917/1)We thank Professor Kenichi Soga(UC Berkeley)for providing valuable input to this research.We would also like to acknowledge the contribution of Angus Cameron from Environmental Scientifics Group.
文摘In this paper,we present an application of distributed fiber optic sensor(DFOS)technology to measure the strain of a continuous flight auger(CFA)test pile with a central reinforcement bar bundle,during a static load test carried out in London.Being distributed in nature,DFOS gives much more information about the pile performance as compared to traditional point sensors,such as identifying cross-sectional irregularities or other anomalies.The strain profiles recorded along the depth of the piles from the DFOS were used to calculate pile deformation(contraction),shaft friction,and tip resistance under various loads.Based on this pile load test,a finite element(FE)analysis was performed using a one-dimensional nonlinear load-transfer model.Calibrated by the shaft friction and tip resistance derived from the monitored data,the FE model was able to simulate the pile and soil performance during the load testing with good accuracy.The effect of the reinforcement cage and central reinforcement bar bundle were investigated,and it was found that the addition of a reinforcement cage would reduce the pile settlement by up to 20%.
基金founded by H2020 ITN CELTA under Grant No.675683 of Call:H2020-MSCA-ITN-2015
文摘We propose and experimentally validate an optical true time delay beamforming scheme with straightforward integration into hybrid optical/millimeter(mm)-wave access networks. In the proposed approach, the most complex functions, including the beamforming network, are implemented in a central office, reducing the complexity and cost of remote antenna units. Different cores in a multi-core fiber are used to distribute the modulated signals to high-speed photodetectors acting as heterodyne mixers. The mm-wave carrier frequency is fixed to 50 GHz(VBand), thereby imposing a progressive delay between antenna elements of a few picoseconds. That true time delay is achieved with an accuracy lower than 1 ps and low phase noise.
基金We would like to thank Sina Sedighi and Prof.Marcelo Soto for fruitful discussions and for help with signal processing.This work was financed by the Romanian Ministry of Education and Research(Grant No.34/01.09.2016,ID:P_37_788,MySMIS:103364),project co-funded by the European Regional Development Fund through the Competitiveness Operational Program.
文摘We use distributed fiber optic strain sensing to examine swelling of the fiber’s polymer coating.The distributed sensing technique that uses unmodified low-cost telecom fibers opens a new dimension of applications that include leak detection,monitoring of water quality,and waste systems.On a short-range length scale,the technology enables“lab-on-a-fiber”applications for food processing,medicine,and biosensing for instance.The chemical sensing is realized with unmodified low-cost telecom optical fibers,namely,by using swelling in the coating material of the fiber to detect specific chemicals.Although generic and able to work in various areas such as environmental monitoring,food analysis,agriculture or security,the proposed chemical sensors can be targeted for water quality monitoring,or medical diagnostics where they present the most groundbreaking nature.Moreover,the technique is without restrictions applicable to longer range installations.
基金The authors would like to thank all of the members in the FORC at UESTC for their hard work and important contributions to this workThis work was funded by the Natural Science Foundation of China(Grant Nos.41527805 and 61635005)the 111 Poject(Grant No.B14039).
文摘Phase-sensitive optical time domain reflectometry(Ф-OTDR)is an effective way to detect vibrations and acoustic waves with high sensitivity,by interrogating coherent Rayleigh backscattering light in sensing fiber.In particular,fiber-optic distributed acoustic sensing(DAS)based on theФ-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection,borehole seismic acquisition,structure health monitoring,etc.,in recent years,with superior advantages such as long sensing range,fast response speed,wide sensing bandwidth,low operation cost and long service lifetime.Significant advances in research and development(R&D)ofФ-OTDR have been made since 2014.In this review,we present a historical review ofФ-OTDR and then summarize the recent progress ofФ-OTDR in the Fiber Optics Research Center(FORC)at University of Electronic Science and Technology of China(UESTC),which is the first group to carry out R&D ofФ-OTDR and invent ultra-sensitive DAS(uDAS)seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019.It can be seen that theФ-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.
基金supported by the National Key R&D Program of China (No. 2017YFB0405501)the National Natural Science Foundation of China (Nos. 61705050, 61675052, 61965005, 61975038, and 61827819)the Guangxi Project (Nos. 2018AD19081 and 2018AA20001)
文摘The distributed optical fiber surface plasmon resonance(SPR)sensors have attracted wide attention in biosensing and chemical sensing applications.However,due to the limitation of their sensing structure,it is difficult to adjust their res-onant wavelength and sensitivity.Here,novel and flexible cascaded helical-core fiber[HCF)SPR sensors are proposed theoretically and experimentally for distributed sensing applications.It is shown that the resonant wavelength and sensitivity of the sensors can be conveniently controlled by adjusting the twist pitch of the helical core.A high sensitivity of 11,180 nm/RIU for refractive-index measurement ranging from 1.355 to 1.365 is realized experimentally when the twist pitch of the helical core is 1.5 mm.It is worth noting that the sensitivity can be further improved by reducing the twist pitch.For example,the sensitivity of the sensor with a twist pitch of 1.4 mm can theoretically exceed 20,000 nm/RIU.This work opens up a new way to implement multi-parameter or distributed measurement,especially to establish sensing networks integrated in a single-core fiber or a multi-core fiber.