In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u...This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.展开更多
The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations ar...The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.展开更多
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab...A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.展开更多
The objective of this paper is to provide a robust Virtual Power Plant(VPP)network collaborated with Internet of Things(IoT)which uses a conceptual model to integrate each device in the grid.Based on the functionality...The objective of this paper is to provide a robust Virtual Power Plant(VPP)network collaborated with Internet of Things(IoT)which uses a conceptual model to integrate each device in the grid.Based on the functionality all the devices which are purely distributed within the grid are networked initially from residential units to substations and up to service data and demand centres.To ensure the trapping of the available power and the efficient transfer of Distributed Generation(DG)power to the grid Distribution Active Control(DAC)strategy is used.Synchronized optimization of DG parameter which includes DG size,location and type are adopted using Dispatch strategy.The case studies are optimized by rescheduling the generation and with load curtailment.Maximized Customer Benefit(MCB)is taken as an objective function and a straight forward solution is given by heuristic search techniques.This method was vindicated in a practical Indian Utility system.This control proposes better performances,ensures reliability and efficiency even under parameter variations along with disturbances which is justified using IEEE 118 bus system and real time Indian utility 63 bus system.Results reveal that the proposed technique proves advantages of low computational intricacy.展开更多
Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric ...Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.展开更多
To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which el...To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which elements of conventional mathematical optimization algorithms are combined with adaptive dynamic elements drawn from intelligent control theory. In our design, the sequential quadratic programming algorithm was first utilized to obtain an optimal solution for power distribution among multiple units. Fuzzy system was then developed to implement the optimal strategies on the basis of optimal solution. In addition, parameters of the fuzzy system were adapted via a genetic algorithm. Tbe simulation results illustrate that the methodology described is useful for a range of control system designs.展开更多
The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key...The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network.展开更多
The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to...The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.展开更多
A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current an...A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under mult...Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers.展开更多
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
Distributed generation (DG) is gaining in importance due to the growing demand for electrical energy and the key role it plays in reducing actual energy losses, lowering operating costs and improving voltage stability...Distributed generation (DG) is gaining in importance due to the growing demand for electrical energy and the key role it plays in reducing actual energy losses, lowering operating costs and improving voltage stability. In this paper, we propose to inject distributed power generation into a distribution system while minimizing active energy losses. This injection should be done at a grid node (which is a point where energy can be injected into or recovered from the grid) that will be considered the optimal node when total active losses in the radial distribution system are minimal. The focus is on meeting energy demand using renewable energy sources. The main criterion is the minimization of active energy losses during injection. The method used is the algorithm of bee colony (ABC) associated with Newtonian energy flow transfer equations. The method has been implemented in MATLAB for optimal node search in IEEE 14, 33 and 57 nodes networks. The active energy loss results of this hybrid algorithm were compared with the results of previous searches. This comparison shows that the proposed algorithm allows to have reduced losses with the power injected that we have found.展开更多
The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods ...The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods have been used and applied to determine the optimal allocation and sizing of the PV to be installed as DGs (ranging from 250 kW up to 3 MW). The first one is to determine the location according to the maximal power losses reduction over the feeder. The second one is by using the Harmony Search Algorithm which is claimed to be a powerful technique for optimal allocation of PV systems. The results of the two techniques were compared and found to be nearly closed. Furthermore, investigation on the effects on the feeder in terms of voltage levels, power factor readings, and short circuit current levels has been done. All calculations and simulations are conducted by using the MATLAB Simulation Program. Some field calculations and observations have been expended in order to substantiate the research findings and validation.展开更多
The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristi...The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.展开更多
This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is...This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.展开更多
The increasing use of renewable energy in the power system results in strong stochastic disturbances and degrades the control performance of the distributed power grids.In this paper,a novel multi-agent collaborative ...The increasing use of renewable energy in the power system results in strong stochastic disturbances and degrades the control performance of the distributed power grids.In this paper,a novel multi-agent collaborative reinforcement learning algorithm is proposed with automatic optimization,namely,Dyna-DQL,to quickly achieve an optimal coordination solution for the multi-area distributed power grids.The proposed Dyna framework is combined with double Q-learning to collect and store the environmental samples.This can iteratively update the agents through buffer replay and real-time data.Thus the environmental data can be fully used to enhance the learning speed of the agents.This mitigates the negative impact of heavy stochastic disturbances caused by the integration of renewable energy on the control performance.Simulations are conducted on two different models to validate the effectiveness of the proposed algorithm.The results demonstrate that the proposed Dyna-DQL algorithm exhibits superior stability and robustness compared to other reinforcement learning algorithms.展开更多
The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection...The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection is usually based only on a single criterion analysis, and it is defined by thermal or economic aspects. The problem of optimal dispatch of DG is typical example of optimization, because it differs from the classical problem of generation dispatch in the power system, due to the specific criteria related to the DG interconnection. The most important goals are to maximize the renewable production and to minimize the total cost, while satisfying additional constraints related to the operation of a distribution network. As there are many DGs in a distribution network, it is very complicated to decide the optimal DG outputs to satisfy all the criteria and constraints imposed by the distribution network. Another problem is the lack of the dispatcher control over DGs, and very often, the only available action is to switch on or off the generator. Finally, network operator and DG owner perspective are often opposed regarding appropriate control action in the network. In this paper, a multicriteria decision support based on AHP (analytical hierarchical processes) method is proposed for the choice of the dispatching action. The method is illustrated on the choice of the DG to be switched off in the case or reverse power flow.展开更多
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
文摘This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.
文摘The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.
文摘A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.
文摘The objective of this paper is to provide a robust Virtual Power Plant(VPP)network collaborated with Internet of Things(IoT)which uses a conceptual model to integrate each device in the grid.Based on the functionality all the devices which are purely distributed within the grid are networked initially from residential units to substations and up to service data and demand centres.To ensure the trapping of the available power and the efficient transfer of Distributed Generation(DG)power to the grid Distribution Active Control(DAC)strategy is used.Synchronized optimization of DG parameter which includes DG size,location and type are adopted using Dispatch strategy.The case studies are optimized by rescheduling the generation and with load curtailment.Maximized Customer Benefit(MCB)is taken as an objective function and a straight forward solution is given by heuristic search techniques.This method was vindicated in a practical Indian Utility system.This control proposes better performances,ensures reliability and efficiency even under parameter variations along with disturbances which is justified using IEEE 118 bus system and real time Indian utility 63 bus system.Results reveal that the proposed technique proves advantages of low computational intricacy.
文摘Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.
基金Sponsored by the Indiana 21st Century Research and Technology Fund
文摘To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which elements of conventional mathematical optimization algorithms are combined with adaptive dynamic elements drawn from intelligent control theory. In our design, the sequential quadratic programming algorithm was first utilized to obtain an optimal solution for power distribution among multiple units. Fuzzy system was then developed to implement the optimal strategies on the basis of optimal solution. In addition, parameters of the fuzzy system were adapted via a genetic algorithm. Tbe simulation results illustrate that the methodology described is useful for a range of control system designs.
文摘The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network.
文摘The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.
文摘A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
文摘Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers.
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
文摘Distributed generation (DG) is gaining in importance due to the growing demand for electrical energy and the key role it plays in reducing actual energy losses, lowering operating costs and improving voltage stability. In this paper, we propose to inject distributed power generation into a distribution system while minimizing active energy losses. This injection should be done at a grid node (which is a point where energy can be injected into or recovered from the grid) that will be considered the optimal node when total active losses in the radial distribution system are minimal. The focus is on meeting energy demand using renewable energy sources. The main criterion is the minimization of active energy losses during injection. The method used is the algorithm of bee colony (ABC) associated with Newtonian energy flow transfer equations. The method has been implemented in MATLAB for optimal node search in IEEE 14, 33 and 57 nodes networks. The active energy loss results of this hybrid algorithm were compared with the results of previous searches. This comparison shows that the proposed algorithm allows to have reduced losses with the power injected that we have found.
文摘The rapid spreading of the Photovoltaic (PV) Systems as Distributed Generation (DG) in medium and low voltage networks created many effects and changes on the existing power system networks. In this work, two methods have been used and applied to determine the optimal allocation and sizing of the PV to be installed as DGs (ranging from 250 kW up to 3 MW). The first one is to determine the location according to the maximal power losses reduction over the feeder. The second one is by using the Harmony Search Algorithm which is claimed to be a powerful technique for optimal allocation of PV systems. The results of the two techniques were compared and found to be nearly closed. Furthermore, investigation on the effects on the feeder in terms of voltage levels, power factor readings, and short circuit current levels has been done. All calculations and simulations are conducted by using the MATLAB Simulation Program. Some field calculations and observations have been expended in order to substantiate the research findings and validation.
文摘The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.
文摘This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.
基金supported by the National Natural Sci-ence Foundation of China(No.52277108)Guangdong Provincial Department of Science and Technology(No.2022A0505020015).
文摘The increasing use of renewable energy in the power system results in strong stochastic disturbances and degrades the control performance of the distributed power grids.In this paper,a novel multi-agent collaborative reinforcement learning algorithm is proposed with automatic optimization,namely,Dyna-DQL,to quickly achieve an optimal coordination solution for the multi-area distributed power grids.The proposed Dyna framework is combined with double Q-learning to collect and store the environmental samples.This can iteratively update the agents through buffer replay and real-time data.Thus the environmental data can be fully used to enhance the learning speed of the agents.This mitigates the negative impact of heavy stochastic disturbances caused by the integration of renewable energy on the control performance.Simulations are conducted on two different models to validate the effectiveness of the proposed algorithm.The results demonstrate that the proposed Dyna-DQL algorithm exhibits superior stability and robustness compared to other reinforcement learning algorithms.
文摘The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection is usually based only on a single criterion analysis, and it is defined by thermal or economic aspects. The problem of optimal dispatch of DG is typical example of optimization, because it differs from the classical problem of generation dispatch in the power system, due to the specific criteria related to the DG interconnection. The most important goals are to maximize the renewable production and to minimize the total cost, while satisfying additional constraints related to the operation of a distribution network. As there are many DGs in a distribution network, it is very complicated to decide the optimal DG outputs to satisfy all the criteria and constraints imposed by the distribution network. Another problem is the lack of the dispatcher control over DGs, and very often, the only available action is to switch on or off the generator. Finally, network operator and DG owner perspective are often opposed regarding appropriate control action in the network. In this paper, a multicriteria decision support based on AHP (analytical hierarchical processes) method is proposed for the choice of the dispatching action. The method is illustrated on the choice of the DG to be switched off in the case or reverse power flow.